Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC.
L là hình chiếu của H trên AK. Chứng minh các tứ giác BFLK và CELK nội tiếp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P = (x^2-6x+9)/x + 13x/x = (x-3)^2/x + 13 >= 0 + 13 vì x > = 1
Dấu "=" xảy ra <=> x-3 = 0 <=> x=3 ( tm )
Vậy Min P = 13 <=> x=3
k mk nha
a) Cm: OD là phân giác góc BOC
Nối C và B
Xét tam giác ABC có:
* C thuộc (O)
* AB là đường kính của (O)
=> tam giác ABC nội tiếp đường tròn tâm O, đường kính AB
=> tam giác ABC vuông tại C
=> AC vuông góc BC
Ta có: AC // OD (gt)
Mà AC vuông góc BC (cmt)
=> OD vuông góc BC
Xét tam giác OCB có:
* OC = OB (=R)
=> tam giác OCB cân tại O
Mà có OD là đường cao (OD vuông góc BC cmt)
=> OD cũng là phân giác góc BOC (tính chất)
b) Cm: CD là tiếp tuyến của đường tròn
Xét tam giác COD và tam giác BOD có:
* OC = OB (=R)
* góc COD = góc BOD (cmt ở câu a)
* OD là cạnh chung
=> tam giác COD = tam giác BOD (c-g-c)
=> góc OBD = góc OCD (góc tương ứng)
Mà góc OBD = 90 độ (BD là tiếp tuyến)
=> góc OCD = 90 độ
=> CD vuông góc OC
=> CD là tiếp tuyến đường tròn tâm O
a)\(\left(d1\right)\) và \(\left(d2\right)\)cắt nhau
\(\Leftrightarrow\hept{\begin{cases}5-k\ne k\\m-2=4-m\end{cases}}\Leftrightarrow\hept{\begin{cases}5=k+k\\m+m=4+2\end{cases}}\Leftrightarrow\hept{\begin{cases}2k\ne5\\2m=6\end{cases}}\Leftrightarrow\hept{\begin{cases}k\ne\frac{5}{2}\\m=3\end{cases}}\) \(\Leftrightarrow m=3\)
b) \(\left(d1\right)\)và \(\left(d2\right)\)song song khi
\(\Leftrightarrow\hept{\begin{cases}5-k=k\\m-2\ne4-m\end{cases}}\Leftrightarrow\hept{\begin{cases}k=\frac{5}{2}\\m\ne3\end{cases}}\)
c) \(\left(d1\right)\)và \(\left(d2\right)\)trùng nhau
\(\Leftrightarrow\hept{\begin{cases}5-k=k\\m-2=4-m\end{cases}}\Leftrightarrow\hept{\begin{cases}k=\frac{5}{2}\\m=3\end{cases}}\)
Cm: tam giác OSM cân tại S
Ta có: góc AMO + góc OMS = 90 độ ( AM vuông góc MS )
góc NOM + góc NMO = 90 độ ( MN là tiếp tuyến )
=> góc AMO + góc OMS = góc NOM + góc NMO
Mà góc AMO = góc NMO ( OM là phân giác góc AMN )
=> góc OMS = góc NOM
=> góc OMS = góc MOS ( S thuộc ON )
Xét tam giác OMS có:
* góc OMS = góc MOS (cmt)
=> tam giác OMS cân tại S
Ta thấy AFH, AEH và ALH là các tam giác vuông chung cạnh huyền AH nên A, F, H, L, E cùng thuộc đường tròn đường kính AH. Vậy AFHL và AEHF là tứ giác nội tiếp.
\(\Rightarrow\widehat{ALF}=\widehat{AHF}\) (Hai góc nội tiếp cùng chắn cung AF)
Lại có \(\widehat{AHF}=\widehat{FBD}\) (Cùng phụ với góc \(\widehat{BAD}\) )
Vậy nên \(\widehat{ALF}=\widehat{FBD}\)
Từ đó suy ra tứ giác BLFK nội tiếp (Góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện)
Do tứ giác AEHF nội tiếp nên \(\widehat{FEH}=\widehat{FAH}\) (Hai góc nội tiếp cùng chắn cung FH)
Vậy nên \(\widehat{AEF}=\widehat{ABC}\) (Cùng phụ với hai góc bên trên)
Vậy nên \(\Delta AEF\sim\Delta ABC\Rightarrow\widehat{AFE}=\widehat{ACB}\)
Lại có \(\widehat{AFE}=\widehat{ALE}\)
Vậy nên \(\widehat{ACB}=\widehat{ALE}\), suy ra CELK là tứ giác nội tiếp (Góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện)