chứng minh \(\frac{2\sin^2\frac{x}{2}+\sin2x-1}{2\sin x-1}+\sin x=\sqrt{2}\sin\left(x+\frac{\pi}{4}\right)\)
Em đang cần gấp ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sửa lại đầu bài đi nha, phải là tam giác ABC vuông tại A vì nếu AC=1/2 BC thì AB+AC=BC ( trái với bất đẳng thức tam giác)
a) xét tam giác ABC và tam giác ABD có
AC=AD( gt)
AB chung
CAB=DAB(=90 độ)
=> tam giác CAB= tam giác DAB(cgc)
=> BC=BD( hai cạnh tương ứng)
b) vì BC=BD=> BD=2AC
vì AD=AC=> CD=2AC
=> BC=BD=CD=2AC=> tam giác BCD đều
\(\frac{x}{2x-3}-\frac{5}{x}=\frac{-1}{2x^2-3x}\)
\(< =>\frac{x^2}{2x^2-3x}-\frac{10x-15}{2x^2-3x}=\frac{-1}{2x^2-3x}\)
\(< =>x^2-10x+15=-1\)
\(< =>x^2-10x+16=0\)
Ta có : \(\Delta=100-4.16=100-64=36\)
nên phương trình sẽ có 2 nghiệm phân biệt
\(x_1=\frac{10+\sqrt{36}}{2}=\frac{10+6}{2}=8\)
\(x_2=\frac{10-\sqrt{36}}{2}=\frac{10-6}{2}=2\)
vậy phương trình có 2 nghiệm phân biệt là {2;8}
\(\frac{x}{2x-3}-\frac{5}{x}=\frac{-1}{2x^2-3x}\) ĐKXĐ : \(x\ne0;\frac{3}{2}\)
\(\frac{2x}{x\left(2x-3\right)}-\frac{5\left(2x-3\right)}{x\left(2x-3\right)}=\frac{-1}{2x^2-3x}\)
\(\frac{2x}{2x^2-3x}-\frac{10x-15}{2x^2-3x}=\frac{-1}{2x^2-3x}\)
Khử mẫu ta đc ; \(2x-10x-15=-1\)
\(-12x=14\Leftrightarrow x=-\frac{7}{6}\)(tm)
HÁ ? lp 5 đã hc đến cái pt bậc 2 này rồi á e ... tuổi trẻ tài cao ghê :))
a, \(x^2-3x+2=0\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
b, \(x^2+5x-6=0\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-6\end{cases}}\)
ò tớ phân tích cho cậu nhé ka xem huynh đã hc chưa nhỉ :>> cậu phân tích đi có j tớ phân tích đầy đủ cậu xem nhớ :>> hay cứ pk dùng trung gian j j thế >>:
Đề bài: Tính
\(A=\frac{1}{2}+\frac{1}{8}+\frac{1}{32}+\frac{1}{128}+\frac{1}{512}+\frac{1}{2048}\)
\(A=\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}+\frac{1}{2^{11}}\)
\(2^2.A=2+\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}\)
\(4A-A=\left(2+\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}+\frac{1}{2^{11}}\right)\)
\(3A=2-\frac{1}{2^{11}}\)
\(\Rightarrow A=\frac{2-\frac{1}{2^{11}}}{3}\)
Vậy \(A=\frac{2-\frac{1}{2^{11}}}{3}\).
ta có
A= 1/2+ 1/8+1/32+1/128+1/512+1/2048
=> A= 1/2 +1/ 2^3 +1/2^5 +1/2^7+1/2^9+1/2^11
=> 2^2 A=2+1/2+1/2^3+1/2^5+1/2^7+1/2^9
=> 2^2A-A= (2+1/2+1/2^3+1/2^5+1/2^7+1/2^9)-(1/2+1/2^3+/2^5+1/2^7+1/2^9+1/2^11)
=> 3A= 2- 1/2^11
=>3A= 4095/2048
=> A= 1365/2048
Ta có:
\(2\sin^2\frac{x}{2}-1=-\cos x\)
Do đó: \(\frac{2\sin^2\frac{x}{2}+\sin2x-1}{2\sin x-1}+\sin x\)
\(=\frac{-\cos x+2\sin x.\cos x}{2\sin x-1}+\sin x\)
\(=\cos x+\sin x=\sqrt{2}\sin\left(x+\frac{\pi}{4}\right)\)