K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2020

Ta có: 

\(2\sin^2\frac{x}{2}-1=-\cos x\)

Do đó: \(\frac{2\sin^2\frac{x}{2}+\sin2x-1}{2\sin x-1}+\sin x\)

\(=\frac{-\cos x+2\sin x.\cos x}{2\sin x-1}+\sin x\)

\(=\cos x+\sin x=\sqrt{2}\sin\left(x+\frac{\pi}{4}\right)\)

12 tháng 6 2020

sửa lại đầu bài đi nha, phải là tam giác ABC vuông tại A vì nếu AC=1/2 BC thì AB+AC=BC ( trái với bất đẳng thức tam giác)

a) xét tam giác ABC và tam giác ABD có

AC=AD( gt)

AB chung

CAB=DAB(=90 độ)

=> tam giác CAB= tam giác DAB(cgc)

=> BC=BD( hai cạnh tương ứng)

b) vì BC=BD=> BD=2AC

vì AD=AC=> CD=2AC

=> BC=BD=CD=2AC=> tam giác BCD đều

11 tháng 6 2020

\(\frac{x}{2x-3}-\frac{5}{x}=\frac{-1}{2x^2-3x}\)

\(< =>\frac{x^2}{2x^2-3x}-\frac{10x-15}{2x^2-3x}=\frac{-1}{2x^2-3x}\)

\(< =>x^2-10x+15=-1\)

\(< =>x^2-10x+16=0\)

Ta có : \(\Delta=100-4.16=100-64=36\)

nên phương trình sẽ có 2 nghiệm phân biệt

 \(x_1=\frac{10+\sqrt{36}}{2}=\frac{10+6}{2}=8\)

\(x_2=\frac{10-\sqrt{36}}{2}=\frac{10-6}{2}=2\)

vậy phương trình có 2 nghiệm phân biệt là {2;8}

\(\frac{x}{2x-3}-\frac{5}{x}=\frac{-1}{2x^2-3x}\) ĐKXĐ : \(x\ne0;\frac{3}{2}\)

\(\frac{2x}{x\left(2x-3\right)}-\frac{5\left(2x-3\right)}{x\left(2x-3\right)}=\frac{-1}{2x^2-3x}\)

\(\frac{2x}{2x^2-3x}-\frac{10x-15}{2x^2-3x}=\frac{-1}{2x^2-3x}\)

Khử mẫu ta đc ; \(2x-10x-15=-1\)

\(-12x=14\Leftrightarrow x=-\frac{7}{6}\)(tm)

HÁ ? lp 5 đã hc đến cái pt bậc 2 này rồi á e ... tuổi trẻ tài cao ghê :))

a, \(x^2-3x+2=0\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

b, \(x^2+5x-6=0\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-6\end{cases}}\)

ò tớ phân tích cho cậu nhé ka xem huynh đã hc chưa nhỉ :>> cậu phân tích đi có j tớ phân tích đầy đủ cậu xem nhớ :>> hay cứ pk dùng trung gian j j thế >>: 

11 tháng 6 2020

Đề bài: Tính

\(A=\frac{1}{2}+\frac{1}{8}+\frac{1}{32}+\frac{1}{128}+\frac{1}{512}+\frac{1}{2048}\)

\(A=\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}+\frac{1}{2^{11}}\)

\(2^2.A=2+\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}\)

\(4A-A=\left(2+\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}+\frac{1}{2^{11}}\right)\)

\(3A=2-\frac{1}{2^{11}}\)

\(\Rightarrow A=\frac{2-\frac{1}{2^{11}}}{3}\)

Vậy \(A=\frac{2-\frac{1}{2^{11}}}{3}\).

11 tháng 6 2020

ta có

A= 1/2+ 1/8+1/32+1/128+1/512+1/2048

=> A= 1/2 +1/ 2^3 +1/2^5 +1/2^7+1/2^9+1/2^11

=> 2^2 A=2+1/2+1/2^3+1/2^5+1/2^7+1/2^9

=> 2^2A-A= (2+1/2+1/2^3+1/2^5+1/2^7+1/2^9)-(1/2+1/2^3+/2^5+1/2^7+1/2^9+1/2^11)

=> 3A= 2- 1/2^11

=>3A= 4095/2048

=> A= 1365/2048

11 tháng 6 2020