cho tam giác ABC vuông cân tại A.Trên 1 nửa mặt phẳng bờ là AB chứa C vẽ tam giác ABD vuông cân tại B.E là trung điểm của BD;CM vuông góc với AE tại M;N là trung điểm của CM;K là giao của BM và DN.Tính góc BKD.
giúp mik với,mik cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{2x+4}{10}+\frac{2-x}{15}=\frac{\left(2x+4\right).3}{10.3}+\frac{\left(2-x\right).2}{15.2}\)
\(=\frac{6x+12}{30}+\frac{4-2x}{30}=\frac{6x+12+4-2x}{30}=\frac{4x+16}{30}\)
\(=\frac{4.\left(x+4\right)}{30}=\frac{2\left(x+4\right)}{15}\)
\(b,\frac{3x}{10}+\frac{2x-1}{15}+\frac{2-x}{20}=\frac{3x.6}{10.6}+\frac{\left(2x-1\right).4}{15.4}+\frac{\left(2-x\right).3}{20.3}\)
\(=\frac{18x}{60}+\frac{8x-4}{60}+\frac{6-3x}{60}=\frac{18x+8x-4+6-3x}{60}=\frac{23x+2}{60}\)
\(c,\frac{x+1}{2x-2}+\frac{x^2+3}{2-2x^2}=\frac{x+1}{2\left(x-1\right)}+\frac{x^2+3}{2\left(1-x^2\right)}=\frac{x+1}{2\left(x-1\right)}+\frac{-x^2-3}{2\left(x^2-1\right)}\)
\(=\frac{x+1}{2\left(x-1\right)}+\frac{-x^2-3}{2\left(x-1\right)\left(x+1\right)}\)\(=\frac{\left(x+1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}+\frac{-x^2-3}{2\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^2+2x+1-x^2-3}{2\left(x-1\right)\left(x+1\right)}=\frac{2x-2}{2\left(x-1\right)\left(x+1\right)}=\frac{2\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\)\(=\frac{1}{x+1}\)
a/ Ta có \(A=\frac{\frac{x}{x^2-4}+\frac{1}{x+2}-\frac{2}{x-2}}{1-\frac{x}{x+2}}\)với \(\hept{\begin{cases}x\ne\pm2\\x\ne0\end{cases}}\)
\(A=\frac{\frac{x}{x^2-4}+\frac{x-2-2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}}{\frac{x+2-x}{x+2}}\)
\(A=\frac{\frac{x}{x^2-4}+\frac{x-2-2x-4}{x^2-4}}{\frac{2}{x+2}}\)
\(A=\frac{\frac{x-x-6}{x^2-4}}{\frac{2}{x+2}}\)
\(A=\frac{-6}{x^2-4}.\frac{x+2}{2}\)
\(A=\frac{-3}{x-2}\)
b/ Ta có \(x=-4\)thoả mãn ĐKXĐ
Vậy với \(x=-4\):
\(A=\frac{-3}{x-2}=\frac{-3}{-4-2}=\frac{1}{2}\)
c/ Khi \(A\inℤ\)
=> \(\frac{-3}{x-2}\inℤ\)
=> \(-3⋮\left(x-2\right)\)
=> x - 2 là ước của -3
Ta có bảng sau:
x-2 | -1 | -2 | -3 | -6 | 1 | 2 | 3 | 6 |
x | 1 | 0 | -1 | -4 | 3 | 4 | 5 | 8 |
Mà ĐKXĐ \(\hept{\begin{cases}x\ne\pm2\\x\ne0\end{cases}}\)
=> \(x\in\left\{\pm1;\pm4;3;5;8\right\}\)
Vậy khi \(x\in\left\{\pm1;\pm4;3;5;8\right\}\)thì \(A\inℤ\).
a,b: Xét ΔCDF vuông tại C và ΔBCE vuông tại B có
CD=BC
CF=BE
Do đó: ΔCDF=ΔBCE
=>góc CDF=góc BCE
=>góc BCE+góc MFC=góc DFC+góc CDF=90 độ
=>CE vuông góc với DF
c: Gọi Klà trung điểm của CD và N là giao của AK và DF
Xét tứ giác AECK có
AE//CK
AE=CK
Do dó: AECK là hình bình hành
SUy ra: AK=CE và AK//CE
=>AK vuông góc với DF
Xét ΔDMC có
K là trung điểm của DC
KN//MC
Do đó: N là trung điểm của DM
Xét ΔAMD có
AN vừa là đường cao, vừa là đường trung tuyến
nên ΔAMD cân tại A
Gọi giao điểm của tia AE và tia CD là F.
Dễ thấy: Tứ giác ABDC là hình vuông => AB=BD=DC=CA
Xét \(\Delta\)ABE và \(\Delta\)FDE có: ^ABE = ^FDE (=900), BE=DE; ^AEB = ^FED => \(\Delta\)ABE = \(\Delta\)FDE (g.c.g)
=> AB=FD (2 cạnh tương ứng) => FD=CD => D là trung điểm CF.
Xét \(\Delta\) CMF vuông tại M có trung tuyến MD => MD = CD => DM=DC=DB
\(\Rightarrow\widehat{BMC}=\widehat{DMB}+\widehat{DMC}=\frac{180^0-\widehat{BDM}}{2}+\frac{180^0-\widehat{CDM}}{2}=135^0\)
=> ^KMN = 450. Lại có: \(\Delta\)CDM cân tại D có trung tuyến DN => DN vuông góc CM => ^MNK = 900
Suy ra: \(\Delta\)MNK vuông cân tại N => ^MKN = 450.Hay ^BKD = 450.
Vậy ^BKD = 450.