Cho đường tròn (O;R) và một điểm A nằm ngoài đường tròn (O;R). Qua A lần lượt kẻ các tiếp tuyến AB, AC đến đường tròn (O;R) (B, C là các tiếp điểm). Lấy điểm D thuộc đường tròn (O;R) sao cho BD song song với AO, đường thẳng AD cắt đường tròn (O;R) tại điểm thứ hai là E. Gọi M là trung điểm của AC.
a. Chứng minh ME là tiếp tuyến của đường tròn (O;R).
b. Từ D kẻ tiếp tuyến với đường tròn (O;R), tiếp tuyến này cắt ME tại T. Gọi r1, r2, r3 lần lượt là bán kính các đường tròn nội tiếp của OME, OTE, OMT. Chứng minh khi A thay đổi thì r1 + r2 + r3 luôn không đổi.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ý bạn ấy là \(x_1^2\)nhưng bạn ấy chưa biết chỗ để đánh chỉ số dưới. Bạn nhấn vào cái biểu tượng x2 ở chỗ khung điều chỉnh thì con trỏ hạ xuống để bạn gõ chỉ số dưới. Xong rồi thì nhấn vào biểu tượng đó lần nữa.
a) Ta có \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)\(=a^2c^2+2acbd+b^2d^2+a^2d^2-2adbc+b^2c^2\)
\(=\left(a^2c^2+b^2c^2\right)+\left(a^2d^2+b^2d^2\right)\)\(=c^2\left(a^2+b^2\right)+d^2\left(a^2+b^2\right)\)\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
b) Ta có \(0\le\left(ad-bc\right)^2\)\(\Leftrightarrow\left(ac+bd\right)^2\le\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
Mà theo câu a, ta có \(\left(ac+bd\right)^2+\left(ad-bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
Nên \(\left(ac+bd\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\)
Điều kiện \(\hept{\begin{cases}x\ne0\\x+y\ne0\end{cases}}\)
Đặt \(\frac{1}{x}=a\)và \(\frac{1}{x+y}=b\), khi đó hệ phương trình đã cho trở thành \(\hept{\begin{cases}2a+5b=2\\3a+b=1,7\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}2a+5b=2\\15a+5b=8,5\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}13a=6,5\\3a+b=2,7\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{1}{2}\\3.\frac{1}{2}+b=2,7\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{1}{2}\\b=\frac{6}{5}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{1}{2}\\\frac{1}{x+y}=\frac{6}{5}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\left(nhận\right)\\\frac{1}{2+y}=\frac{6}{5}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\y=-\frac{7}{6}\end{cases}}\left(nhận\right)\)
Vậy hpt đã cho có nghiệm duy nhất \(\left(2;-\frac{7}{6}\right)\)
Đặt biểu thức trên là A
TC
√1 + 1/1^2 + 1/2^2 = 1 + 1 - 1/2
Tương tự
√1 + 1/2^2 + 1/3^2 = 1 + 1/2 - 1/3
√1 + 1/2021^2 + 2022^2 = 1 + 1/2021 - 1/2022
=> A = (1 + 1 + 1/3 +...+ 1/2021) - (1/2 + 1/3 +....+ 1/2022)
=> A = 1 + 1 - 1/2022 = 4043/2022
đúng không bạn
a) \(\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)
\(=a^2c^2+b^2c^2+b^2d^2+a^2d^2=c^2\left(a^2+b^2\right)+d^2\left(a^2+b^2\right)\)
\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
b) Áp dụng câu a):
\(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(\ge\left(ac+bd\right)^2\)
Dấu \(=\)xảy ra khi \(ad=bc\).
đây là đề học sinh giỏi của tỉnh hải dương năm 2020-2021 ạ