chứng minh rằng giá trị của biểu thức A=(x+4)(x-4)-2x(x+3)+(x+3)^2 không phụ thuộc vào giá trị của biến x
Mọi người giúp mình với!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBNQ có
C là trung điểm của BQ
CA//NQ
Do đó: A là trung điểm của NB
Xét ΔCPM có
B là trung điểm của CP
CA//MP
DO đó: A là trung điểm của CM
Xét tứ giác BMNC có
A là trung điểm chung của BN và MC
nên BMNC là hình bình hành
b: Để ANKM là hình bình hành
nên AM//KN và AN//KM
=>AB//MK và AB=MK
=>ABMK là hình bình hành
=>AI//BM
Xét ΔCBM có
A là trung điểm của CA
AI//BM
DO đó; I là trung điểm của BC
\(x^2+4x-4=0\Leftrightarrow x^2+4x+4=8\Leftrightarrow\left(x+2\right)^2=8\)
\(\Leftrightarrow x+2=\sqrt{8}\Leftrightarrow x=\sqrt{8}-2\)
Bài 2 đề bn viết thiếu đấu + đó
Ta có M=x2+4xy+5y2-2y+3
=(x2+4xy+4y2)+(y2-2y+1)+2
=(x+2y)2 +(y-1)2+2
Do \(\left(x+2y\right)^2+\left(y-1\right)^2\ge0\Rightarrow M\ge2\)
=> đpcm
a) Ta có :
\(\hept{\begin{cases}NE\perp DM\\MG\perp BN\end{cases}}\)
\(\Rightarrow DM//BN\)
\(\Rightarrow\widehat{EDN}=\widehat{GBM}\)( sole trong) (1)
Mà \(\widehat{ADE}=\widehat{EDN}\)(2)
Từ (1) và(2)
\(\Rightarrow\widehat{ADE}=\widehat{GBM}\)
Lại có : \(DM//BN\left(cmt\right)\)
\(\Rightarrow\widehat{AMD}=\widehat{GBM}\)
\(\Rightarrow\widehat{ADM}=\widehat{AMD}\)
=> Tam giác ADM cân tại A
\(\Rightarrow AM=AD\left(dpcm\right)\)
b) P/s: phải là chứng minh tam giác MGB và tam giác NED chớ không phải tam giác MHB bạn ơi .
giải : Xét \(\Delta MGB\)và \(\Delta NED\)ta có :
\(MB=DN\)
\(\widehat{E}=\widehat{G}=90^o\)
\(\widehat{EDN}=\widehat{GBM}\)( câu a )
=> \(\Delta MGB=\Delta NED\)( cạnh huyền - góc nhọn )
c) Vì ABCD là hình bình hành
\(\Rightarrow BM//DN\)( vì AB // CD ) (1)
Lại có : \(DM//BN\)( câu a ) (2)
Từ (1)và(2)
=> MBND là hình bình hành (đpcm)
a)\(4x^2-4x+4=0\Leftrightarrow\left(2x-1\right)^2+3\) (đến đây hết pt dc rùi)
b)\(x^3-27=\left(x-3\right)\left(x^2+3x+9\right)\)
c)\(x^3-4x^2+3x=x^3-x^2-3x^2+3x\)
=\(x^2\left(x-1\right)-3x\left(x-1\right)\)
=\(x\left(x-3\right)\left(x-1\right)\)
d)\(4x^2-12x+3=\left(2x-3\right)^2-6\)
=\(\left(2x-3\right)^2-\sqrt{6^2}\)
=\(\left(2x-3-\sqrt{6}\right)\left(2x-3+\sqrt{6}\right)\)
\(a,4x^2-4x+4=4\left(x^2-x+1\right)\)
\(b,x^3-27=x^3-3^3=\left(x-3\right)\left(x^2+3x+9\right)\)
\(c,x^3-4x^2+3x=x\left(x^2-4x+3\right)\)
\(=x\left[\left(x^2-x\right)-\left(3x-3\right)\right]\)
\(=x\left[x\left(x-1\right)-3\left(x-1\right)\right]\)
\(=x\left(x-1\right)\left(x-3\right)\)
\(d,4x^2-12x+3=4\left(x^2-3x+\frac{3}{4}\right)\)
\(=4\left(x^2-2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\frac{9}{4}+\frac{3}{4}\right)\)
\(=4\left[\left(x-\frac{3}{2}\right)^2-\frac{3}{2}\right]\)
\(=4\left[\left(x-\frac{3}{2}\right)^2-\left(\frac{\sqrt{3}}{\sqrt{2}}\right)^2\right]\)
\(=4\left(x-\frac{3}{2}-\frac{\sqrt{3}}{\sqrt{2}}\right)\left(x-\frac{3}{2}+\frac{\sqrt{3}}{\sqrt{2}}\right)\)
\(=4\left(x-\frac{3+\sqrt{6}}{2}\right)\left(x-\frac{3-\sqrt{6}}{2}\right)\)
P/s: Dương: câu d t k chắc nx, sai thì thông cảm :)) -Huyền Nhi-
mọi người giúp mình với
\(A=x^2-4^2-\left(x+3\right).\left(-2x+x+3\right)=x^2-4^2-\left(x+3\right).\left(-x+3\right)\)
\(=x^2-16+9-x^2=-7\)
=> đpcm