K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2020

máy tính đâu???

15 tháng 8 2020

Gọi d là ƯCLN của 12n + 1 và 30n + 2

12n + 1 chia hết cho d ; 30n + 2 chia hết cho d

=> 5 ( 12n + 1 ) chia hết cho d ; 2 ( 30n + 2 ) chia hết cho d

=> 60n + 5 chia hết cho d ; 60n + 4 chia hết cho d

=> 60n + 5 - 60n - 4 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> Đpcm

15 tháng 8 2020

Đặt \(\left(12n+1;30n+2\right)=d\)\(\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5.\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)

\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow60n+5-60n-4⋮d\)

\(\Rightarrow1⋮d\)\(\Rightarrow d=1\)

Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản

15 tháng 8 2020

Max chứ không phải Min bạn nhé !

A = -2x2 + 5x - 17

A = -2( x2 - 5/2x + 25/16 ) - 111/8

A = -2( x - 5/4 )2 - 111/8

\(-2\left(x-\frac{5}{4}\right)^2\le0\forall x\Rightarrow-2\left(x-\frac{5}{4}\right)^2-\frac{111}{8}\le-\frac{111}{8}\)

Dấu " = " xảy ra <=> x - 5/4 = 0 => x = 5/4

=> MaxA = -111/8 <=> x = 5/4

B = -x2 + 4x - 5

B = -x2 + 4x - 4 - 1

B = -( x2 - 4x + 4 ) - 1

B = -( x - 2 )2 - 1

\(-\left(x-2\right)^2\le0\forall x\Rightarrow-\left(x-2\right)^2-1\le-1\)

Dấu " = " xảy ra <=> x - 2 = 0 => x = 2

=> MaxB = -1 <=> x = 2

C = -4x2 - 4x - 2

C = -( 4x2 + 4x + 1 ) - 1

C = -( 2x + 1 )2 - 1

\(-\left(2x+1\right)^2\le0\forall x\Rightarrow-\left(2x+1\right)^2-1\le-1\)

Dấu " = " xảy ra <=> 2x + 1 = 0 => x = -1/2

=> MaxC = -1 <=> x = -1/2

D = -6 - 8x - 16x2

D = -16( x2 + 1/2x + 1/16 ) - 5

D = -16( x + 1/4 )2 - 5

\(-16\left(x+\frac{1}{4}\right)^2\le0\forall x\Rightarrow-16\left(x+\frac{1}{4}\right)^2-5\le-5\)

Dấu " = " xảy ra <=> x + 1/4 = 0 => x = -1/4

=> MaxD = -5 <=> x = -1/4

15 tháng 8 2020

\(A=-2x^2+5x-17=-2\left(x^2-\frac{5}{2}+\frac{5^2}{4^2}\right)-\frac{111}{8}\)

\(=-2\left(x-\frac{5}{4}\right)^2-\frac{111}{8}\le-\frac{111}{8}\)

Dấu = xảy ra \(< =>-2\left(x-\frac{5}{4}\right)^2=0\Leftrightarrow x-\frac{5}{4}=0\Leftrightarrow x=\frac{5}{4}\)

Vậy \(Max_A=-\frac{111}{8}\)khi \(x=\frac{5}{4}\)

\(B=-x^2+4x-5=-\left(x^2-4x+4\right)-1\)

\(=-\left(x-2\right)^2-1\le-1\)

Dấu = xảy ra \(< =>-\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy \(Max_B=-1\)khi \(x=2\)

\(C=-4x^2-4x-2=-\left(4x^2+4x+2\right)\)

\(=-\left(4x^2+4x+1\right)-1=-\left(2x+1\right)^2-1\le-1\)

Dấu = xảy ra \(< =>-\left(2x+1\right)^2=0\Leftrightarrow2x+1=0\Leftrightarrow x=-\frac{1}{2}\)

Vậy \(Max_C=-1\)khi \(x=-\frac{1}{2}\)

\(D=-6-8x-16x^2=-\left(16x^2+8x+6\right)\)

\(=-\left[\left(4x\right)^2+2.4x+1\right]-5=-\left(4x+1\right)^2-5\le-5\)

Dấu = xảy ra \(< =>-\left(4x+1\right)^2=0\Leftrightarrow4x+1=0\Leftrightarrow x=-\frac{1}{4}\)

Vậy \(Max_D=-5\)khi \(x=-\frac{1}{4}\)

15 tháng 8 2020

Hỏi cửa hàng đó có bao nhiu m vải .Ghi thiếu.kkk

15 tháng 8 2020

Giải:

Lần thứ hai cửa hàng bán đc m số vải là:   7 : 1/3 = 21 (m)

Lần thứ nhất cửa hàng bán đc m số vải là:  7 : 1/2 = 14 (m)

Hôm đó cửa hàng có số m vải là:   7 + 21 + 14 = 42 (m)

Đ/s : 42 m vải

Học tốt !!!

15 tháng 8 2020

a) \(ĐKXĐ:\hept{\begin{cases}a>0\\b>0\\a\ne b\end{cases}}\)

\(A=\left(\sqrt{a}+\frac{b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right):\left(\frac{a}{\sqrt{ab}+b}+\frac{b}{\sqrt{ab}-a}-\frac{a+b}{\sqrt{ab}}\right)\)

\(\Leftrightarrow A=\frac{a+\sqrt{ab}+b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}:\left(\frac{a}{\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}-\frac{b}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}-\frac{a+b}{\sqrt{ab}}\right)\)

\(\Leftrightarrow A=\frac{a+b}{\sqrt{a}+\sqrt{b}}:\frac{a\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)-b\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)-\left(a+b\right)\left(a-b\right)}{\sqrt{ab}\left(a-b\right)}\)

\(\Leftrightarrow A=\left(\sqrt{a}-\sqrt{b}\right)\cdot\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}{a^2-a\sqrt{ab}-b\sqrt{ab}-b^2-a^2+b^2}\)

\(\Leftrightarrow A=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{-a\sqrt{ab}-b\sqrt{ab}}\)

\(\Leftrightarrow A=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{-\sqrt{ab}\left(a+b\right)}\)

\(\Leftrightarrow A=\frac{-\sqrt{a}-\sqrt{b}}{a+b}\)

b) Thay \(a=6-2\sqrt{5}\)và \(b=5\)vào A ta được :

\(A=\frac{-\sqrt{6-2\sqrt{5}}-\sqrt{5}}{6-2\sqrt{5}+5}=\frac{-\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{5}}{1-2\sqrt{5}}=\frac{1-2\sqrt{5}}{1-2\sqrt{5}}=1\)

Vậy ...

15 tháng 8 2020

Một Ong chủ nọ Nuôi m

ột đàn Trâu , có tất cả 12 con , ngày hôm sau ông phát hiện 4 con trâu bị mất hỏi còn lạ bao nhiêu con trâu ?

15 tháng 8 2020

Trên một chiếc xe bus có 18 người. Đi một đoạn thì có 7 người xuống xe và 5 người lên xe. Hỏi trên xe có bao nhiêu người?

15 tháng 8 2020

Bg

1) Gọi các số có ba chữ số đó là abc (abc là số tự nhiên, a khác 0)

Xét chữ số (cs) a:

a có 3 lựa chọn

Xét cs b:

b có 2 lựa chọn (vì b khác a)

Xét cs c:

c có 1 lựa chọn

Số có 3 chữ số khác nhau được lập từ các chữ số 1, 2, 3 là: 3 x 2 x 1 = 6 số

Vậy...

2/ Bg

Vì có 4 món thêm và Giang muốn gọi 2 món thêm khác nhau nên có số lựa chọn kết hợp là:

   4 x (4 - 1) : 2 = 6 (lựa chọn)

      Đáp số: 6 lựa chọn

15 tháng 8 2020

Bài 2 :

b) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2\) (1)

ĐKXĐ : \(x\ge1\)

Pt(1) tương đương :

\(\sqrt{\left(x-1\right)+2\sqrt{x-1}+1}+\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)

\(\Leftrightarrow\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|=2\) (*)

Xét \(x\ge2\Rightarrow\sqrt{x-1}-1\ge0\)

\(\Rightarrow\left|\sqrt{x-1}-1\right|=\sqrt{x-1}-1\)

Khi đó pt (*) trở thành :

\(\sqrt{x-1}+1+\sqrt{x-1}-1=2\)

\(\Leftrightarrow2\sqrt{x-1}=2\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=2\) ( Thỏa mãn )

Xét \(1\le x< 2\) thì \(x\ge2\Rightarrow\sqrt{x-1}-1< 0\)

Nên : \(\left|\sqrt{x-1}-1\right|=1-\sqrt{x-1}\). Khi đó pt (*) trở thành :

\(\sqrt{x-1}+1+1-\sqrt{x-1}=2\)

\(\Leftrightarrow2=2\) ( Luôn đúng )

Vậy tập nghiệm của phương trình đã cho là \(S=\left\{x|1\le x\le2\right\}\)

15 tháng 8 2020

Bài 1 : 

a) ĐKXĐ : \(-1\le a\le1\)

Ta có : \(Q=\left(\frac{3}{\sqrt{1+a}}+\sqrt{1-a}\right):\left(\frac{3}{\sqrt{1-a^2}}\right)\)

\(=\left(\frac{3+\sqrt{1-a}.\sqrt{1+a}}{\sqrt{1+a}}\right)\cdot\frac{\sqrt{1-a^2}}{3}\)

\(=\frac{3+\sqrt{\left(1-a\right)\left(1+a\right)}}{\sqrt{1+a}}\cdot\frac{\sqrt{\left(1-a\right)\left(1+a\right)}}{3}\)

\(=\frac{\left(3+\sqrt{1-a^2}\right).\sqrt{1-a}}{3}\)

Vậy \(Q=\frac{\left(3+\sqrt{1-a^2}\right).\sqrt{1-a}}{3}\) với \(-1\le a\le1\)

b) Với \(a=\frac{\sqrt{3}}{2}\) thỏa mãn ĐKXĐ \(-1\le a\le1\)nên ta có :

\(\hept{\begin{cases}1-a=1-\frac{\sqrt{3}}{2}=\frac{4-2\sqrt{3}}{4}=\frac{\left(\sqrt{3}-1\right)^2}{2^2}\\1-a^2=1-\frac{3}{4}=\frac{1}{4}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\sqrt{1-a}=\sqrt{\frac{\left(\sqrt{3}-1\right)^2}{2^2}}=\left|\frac{\sqrt{3}-1}{2}\right|=\frac{\sqrt{3}-1}{2}\\\sqrt{1-a^2}=\frac{1}{2}\end{cases}}\)

Do đó : \(Q=\frac{\left(3+\frac{1}{2}\right)\cdot\frac{\sqrt{3}-1}{2}}{3}=\frac{5\sqrt{3}-5}{12}\)