K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2018

hệ pt <=> 2x-4y = 6m+2

                2x+y = m+2

<=> 2x-4y-2x-y = 6m+2-m-2

       2x+y = m+2

<=> -5y=5m

        2x+y = m+2

<=> x=m+1 và y=-m

Khi đó : x^2-y^2 = (m+1)^2-(-m)^2 = m^2+2m+1-m^2 = 2m+1

Hình như đề sai hoặc thiếu rùi bạn ơi !

Tk mk nha

2 tháng 2 2018

Bài 2:

c) 

Theo bài ra ta có:

\(a+b+c=1\Rightarrow\hept{\begin{cases}1+\frac{b}{a}+\frac{c}{a}=\frac{1}{a}\\1+\frac{a}{b}+\frac{c}{b}=\frac{1}{b}\\1+\frac{a}{c}+\frac{b}{c}=\frac{1}{a}\end{cases}}\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3+\frac{b}{a}+\frac{a}{b}+\frac{c}{a}+\frac{a}{c}+\frac{b}{c}+\frac{c}{b}\ge9\left(\text{BĐT côsi}\right)\)

3 tháng 9 2018

Áp dụng BĐT AM-GM ta có:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3.\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)     

Do  \(a+b+c=1\)

nên   \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)

Dấu "=" xảy ra khi  \(a=b=c=\frac{1}{3}\)

8 tháng 2 2018

ta có ab(   a\(^2\)+b\(^2\))\(\le\)2( tự CM)

=> ( a\(^2\)+ b\(^2\))\(\le\)2/ab

=> ( a\(^2\)+ b\(^2\))/2\(\le\)1/ab

làm tương tự ta có ( c\(^2\)+d\(^2\))/2\(\le\)1/cd

cộng vế tương ứng vế. Hết.

mình dùng tv ₫ể viết, có một Số chỗ hơi "khắm". Xin thứ lỗi.

8 tháng 2 2018

Bạn Huy Le ơi, cho mik hỏi tại sao ab(a^2+b^2)<=2 vậy

Bạn bảotự chứng minh được à, tại saolại như thế vậy ??!!

2 tháng 2 2018

a, 2x2+5x-3=0 

<=> 2x2+6x-x-3=0

<=> 2x(x+3)-(x+3)=0

<=> (x+3)(2x-1)=0

\(=>\orbr{\begin{cases}x-3=0\\2x-1=0\end{cases}=>\orbr{\begin{cases}x=3\\x=\frac{1}{2}\end{cases}}}\)

Vậy...

2 tháng 2 2018

a, 2x2+5x-3=0

<=> 2x2+6x-x-3=0

<=> 2x(x+3)-(x+3)=0

<=>(x+3)(2x-1)=0

<=> \(\orbr{\begin{cases}x+3=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=\frac{1}{2}\end{cases}}}\)