K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2018

bđt cần c/m <=>

\(\frac{1}{\left(a+c-b-c\right)^2}+\frac{\left(b+c\right)^2}{\left(a+c\right)^2\left(b+c\right)^2}+\frac{\left(a+c\right)^2}{\left(b+c\right)^2\left(a+c\right)^2}\ge4\\ \)

\(\frac{1}{\left(a+c\right)^2+\left(b+c\right)^2-2}+\left(b+c\right)^2+\left(a+c\right)^2\ge4\\ \)

\(\frac{1}{\left(a+c\right)^2+\left(b+c\right)^2-2}+\left(b+c\right)^2+\left(a+c\right)^2-2\ge2\)(đúng , theo cô-si)

ok

11 tháng 2 2018

\(S=\left(\frac{3-1}{1.2.3}\right)+\left(\frac{4-2}{2.3.4}\right)+...+\left(\frac{2018-2016}{2016.2017.2018}\right)\)

\(S=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+..+\frac{1}{2016.2017}-\frac{1}{2017.2018}\right)\)

\(S=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2017.2018}\right)\)

Còn lại tự tính nha bn 

11 tháng 2 2018

khó thể xem trên mạng

13 tháng 8 2018

mình không bít làm