Cho hình thang cân ABCD (AB // CD, AB < CD). Kẻ các đường cao AE, BF của hình thang. Chứng minh rằng DE = CF.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CuO+H2SO4->CuSO4+H2O
tìm số mol của cuo rồi tìm đc số mol của h2so4 sau tìm đc khối lượng
a) ΔABD và ΔEBD có:
BA = BE (gt)
B1ˆ=B2ˆ (BD là tia phân giác góc B)
BD là cạnh chung
⇒ΔABD=ΔEBD (c.g.c)
⇒⇒ BADˆ=BEDˆ(hai góc tương ứng)
mà BAD^ =90 độ
⇒BEDˆ= 90 độ
⇒ DE ⊥⊥ BE
b) ΔABI và ΔEBIcó:
BA = BE (gt)
B1ˆ=B2ˆ (gt)
BI là cạnh chung
⇒ΔABI=ΔEBI (c.g.c)
⇒ IA = IE (hai cạnh tương ứng) (1)
Ta có: I1ˆ+I2ˆ=1800 (hai góc kề bù)
mà I1ˆ=I2ˆ (ΔABI=ΔEBI)
⇒ I1ˆ=I2ˆ=90 độ (2)
Từ (1) và (2) ⇒⇒ DE vuông góc với BE.
c) ΔAHE vuông tại H có góc AEH nhọn
⇒góc AEC là góc tù
⇒⇒ AHEˆ<AECˆ
⇒⇒ AE < AC (quan hệ giữa cạnh và góc đối diện)
mà EH là hình chiếu của AE trên BC.
HC là hình chiếu của AC trên BC.
⇒⇒ EH < HC (quan hệ đường xiên và hình chiếu
\(\Leftrightarrow\left(\frac{x+14}{86}+1\right)+\left(\frac{x+15}{85}+1\right)+\left(\frac{x+16}{84}+1\right)+\left(\frac{x+17}{83}+1\right)+\left(\frac{166}{4}-4\right)=0\)
\(\Leftrightarrow\frac{x+100}{86}+\frac{x+100}{85}+\frac{x+100}{84}+\frac{x+100}{83}+\frac{x+100}{4}=0\)
\(\Leftrightarrow\left(x+100\right).\left(\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\right)=0\)
\(\Leftrightarrow\left(x+100\right)=0\Rightarrow x=-100\left(\text{vì }\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\right)\ne0\)
a, ta có
BC^2=5^2=25
AB^2+AC^2=3^2+4^2=9+16=25
=>AB^2+AC^2=BC^2
=> tam giác ABC vuông tại A
b.
Dx vuông góc với BC
=> góc BDH=90 độ
xét tam giác HBA và tam giác HBD có
BA=BD(gt)
HB cạnh chung
góc HAB=góc HDB= 90 độ
=> tam giác HBA= tam giác HBD(cạnh huyền- cạnh góc vuông)
=> góc HBA=góc HBD(hai góc tương ứng)
=> BH là phân giác góc ABD
\(a\left(a^2-bc\right)+b\left(b^2-ac\right)+c\left(c^2-ab\right)=0\)
\(a^3-abc+b^3-abc+c^3-abc=0\)
\(a^3+b^3+c^3-3abc=0\)
\(\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-bc-ca\right)-3ab\left(a+b+c\right)=0\)
\(\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-bc-ca-3ab\right)=0\)
\(\left(a+b+c\right)\left(a^2+b^2+c^2-bc-ca-ab\right)=0\)
Mà \(a+b+c\ne0\)
\(\Rightarrow a^2+b^2+c^2-bc-ca-ab=0\)
\(a^2+b^2+c^2=ab+bc+ca\)
\(2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)
\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
mình làm hơi tắt.
Đến đây bạn tự làm nốt nhé~
.
Trả lời :
12 + 30 + 2018 = 2060
_Hnay lak ngày SN Kim Taehyung V ( My Idol)
# Nhạt
Vì hình thang ABCD cân
AD = BC;
Ĉ = D̂
Xét hai tam giác vuông AED và BFC có:
AD = BC
Ĉ = D̂
⇒ ΔAED = ΔBFC (cạnh huyền – góc nhọn)
⇒ DE = CF.
Vì tứ giác \(ABCD\)là hình thang cân
\(\Rightarrow\)\(\hept{\begin{cases}AD=BC\\\widehat{ADC}=\widehat{BCD}\end{cases}}\)
Xét \(\Delta AED\)vuông tại \(E\)và \(\Delta BFC\)vuông tại \(F\)có:
\(AD=BC\)( chứng minh trên )
\(\widehat{ADC}=\widehat{BCD}\)( chứng minh trên )
\(\Rightarrow\)\(\Delta AED\)vuông tại \(E\)\(=\) \(\Delta BFC\)vuông tại \(F\)( CH và GN )
\(\Rightarrow\)\(DE=CF\)( hai cạnh tương ứng )