K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2018

\(\hept{\begin{cases}x+y=3\\2x-my=1\end{cases}\Rightarrow\hept{\begin{cases}x=3-y\\2\left(3-y\right)-my=1\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=3-y\\6-2y-my=1\end{cases}\Rightarrow\hept{\begin{cases}x=3-y\\y\left(-2-m\right)=-5\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x=3-y\\y=\frac{-5}{-2-m}=\frac{5}{2+m}\left(m\ne-2\right)\end{cases}\Rightarrow\hept{\begin{cases}x=3-\frac{5}{2+m}=\frac{3\left(2+m\right)-5}{2+m}=\frac{1+3m}{2+m}\\y=\frac{5}{2+m}\end{cases}}}\)

Vậy nghiệm của HPT tính theo m là \(\hept{\begin{cases}x=\frac{1+3m}{2+m}\\y=\frac{5}{2+m}\end{cases}\left(m\ne-2\right)}\)

11 tháng 2 2018

Toạ độ giao điểm của (d1) và (d2) là nghiệm của hệ phương trình:

\(\hept{\begin{cases}y=-x+1\\y=x-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-1=-x+1\\y=x-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x=2\\y=x-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\y=0\end{cases}}\)

Do đó giao điểm của (d1) và (d2) là điểm (1;0)

Để (d1) cắt (d2) tại điểm thuộc (d3) thì (1;0) \(\in\)(d3)

Thay x=1; y=0 vào phương trình đường thẳng (d3), ta được:

-a + \(a^3-a^2+1\)= 0

\(\Leftrightarrow a^2\left(a-1\right)-\left(a-1\right)=0\)

\(\Leftrightarrow\left(a^2-1\right)\left(a-1\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2\left(a+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\left(a-1\right)^2=0\\a+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}a=1\\a=-1\end{cases}}\)

Vậy a=\(\pm1\)thì (d1) cắt (d2) tại một điểm thuộc (d3)

12 tháng 2 2018

\(\ge\)\(\frac{4}{a^2+b^2+2\left(a+b\right)}\) +\(\sqrt{\left(1+ab\right)^2}\) (bunhia và cosi)

  =\(\frac{4}{a^2+b^2+2ab}+1+ab=\frac{4}{\left(a+b\right)^2}+a+b+1\)

do \(a+b=ab\le\frac{\left(a+b\right)^2}{4}\Rightarrow a+b\ge4\)

dạt a+b = t thì t>=4

cần tìm min \(\frac{4}{t^2}+t+1=\frac{4}{t^2}+\frac{t}{16}+\frac{t}{16}+\frac{7t}{8}+1\)

                                      \(\ge3.\sqrt[3]{\frac{4}{t^2}.\frac{t}{16}.\frac{t}{16}}+\frac{7.4}{8}+1=\frac{21}{4}\)

dau = xay ra khi a=b=2

15 tháng 2 2018

áp dụng bdt cô si dạng " Rei' ta có

\(x+y+1\le3\sqrt[3]{xy}\)

từ đề bài ta suy ra  \(xy=\frac{1}{z}\Leftrightarrow\sqrt[3]{xy}=\frac{1}{\sqrt[3]{z}}\)

suy ra   \(3\sqrt[3]{xy}=3\sqrt[3]{\frac{1}{z}}=\frac{3}{\sqrt[3]{z}}\)

áp dụng cho các BDT còn lại

\(3\sqrt[3]{yz}=\frac{3}{\sqrt[3]{x}};3\sqrt[3]{xz}=\frac{3}{\sqrt[3]{y}}\)

suy ra  \(Q\le\frac{1}{\frac{3}{\sqrt[3]{z}}}+\frac{1}{\frac{3}{\sqrt[3]{y}}}+\frac{1}{\frac{3}{\sqrt[3]{x}}}=\frac{\sqrt[3]{z}}{3}+\frac{\sqrt[3]{y}}{3}+\frac{\sqrt[3]{x}}{3}\) Nhân ngược lên 

vậy 

\(Q\le\frac{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}{3}\)

áp dụng BDT cô si dạng "Shinra" ta có  , đặt tử số = S

\(S=\sqrt[3]{z}+\sqrt[3]{y}+\sqrt[3]{x}\ge3\sqrt[3]{\sqrt[3]{xyz}}\)

có xyz=1 vậy    \(3\sqrt[3]{\sqrt[3]{xyz}}=3\)

 suy ra \(S\ge3\) ( ngược dấu loại )

cách 2 áp dụng BDT cosi dạng đặc biệt " Gedou rinne Tensei " ta được

lưu ý " Gedou Rinne Tensei" chỉ dùng lúc nguy cấp + tán gái + thể hiện  và chỉ lừa được những thằng ngu 

không nên dùng trc mặt thầy cô giáo :) .

\(\sqrt[3]{x.1.1}\le\frac{\left(x+2\right)}{3}\)

tương tự vs các BDt còn lại và đặt tử số = S ta được

\(S\le\frac{\left(x+2+y+2+z+2\right)}{3}=\frac{\left(x+y+z+6\right)}{3}=3\) 

thay \(S\le3\) vào biểu thức ta được

\(Q\le\frac{3}{3}=1\)

vây Max Q là 1 dấu = xảy ra khi x=y=z=1

16 tháng 2 2018

Đệch, nói luôn côsi 3 số cho r

Cái này ae nào ko hiểu msg tui, tui dùng điểm rơi giải đc r, dễ hiểu hơn

11 tháng 2 2018

Mik không chơi gunny mik chơi vu vơ thôi 

11 tháng 2 2018

nạp vô

bài 1:cho nửa đường tròn (o) đường kính AB và đường thẳng d vuông góc với AB tại H, M là điểm di động trên nửa đường tròn. đường thẳng MA,MB lần lượt tại C và D.a,c/m HA.HB=HC.HDb,gọi B' là điểm đói xứng với B qua h .c/m ACDB nội tiếpc,khi M di đọng trên (o) thì tâm I của đường tròn ngoại tiếp tam giác ABC chạy trên đường nào.Bài 2:cho (o) và C nằm ngoài đường tròn . kẻ các tiếp...
Đọc tiếp

bài 1:cho nửa đường tròn (o) đường kính AB và đường thẳng d vuông góc với AB tại H, M là điểm di động trên nửa đường tròn. đường thẳng MA,MB lần lượt tại C và D.

a,c/m HA.HB=HC.HD

b,gọi B' là điểm đói xứng với B qua h .c/m ACDB nội tiếp

c,khi M di đọng trên (o) thì tâm I của đường tròn ngoại tiếp tam giác ABC chạy trên đường nào.

Bài 2:cho (o) và C nằm ngoài đường tròn . kẻ các tiếp tuyến CE , CF với đường tròn , cát tuyến CMN, đường thẳng CO cắt đường tròn tại 2 điểm A và B,CA nằm giữa C và O . gọi I là giao điểm của ABEF

a,c/m tam giácCME đòng dạng tam giác CEN

b,c/m \(CE^2\)= CI .CD

c,c/m tam giác CMI đồng dạng tam giác CON

d,c/m MION nội tiếp

e,c/m góc AIM =góc BIN

__________________________________CÁC BẠN LÀM NHANH HỘ MÌNH NHA ____________________________________________

0
12 tháng 2 2018

x=\(\sqrt{\frac{2-\sqrt{3}}{2}}\) =\(\sqrt{\frac{4-2\sqrt{3}}{4}}=\frac{\sqrt{3}-1}{2}\)

\(\Rightarrow2x=\sqrt{3}-1\Rightarrow2x+1=\sqrt{3}\Rightarrow\left(2x+1\right)^2=3\Leftrightarrow4x^2+4x+1=3\Leftrightarrow4x^2+4x-2=0\Leftrightarrow2x^2+2x-1=0\)

nên đề bài = \(\left(x^3\left(2x^2+2x-1\right)+1\right)^{2013}+\frac{\left(x\left(2x^2+2x-1\right)-3\right)^{2013}}{x^2\left(2x^2+2x-1\right)-3^{2013}}\)

 =\(\left(0+1\right)^{2013}+\frac{\left(0-3\right)^{2013}}{0-3^{2013}}=1+1=2\)