K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2019

Coppy tại đây

3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3

=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]

=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)] 

=n.(n+1).(n+2) 

=>S=[n.(n+1).(n+2)] /3

https://lop67.tk/hoidap/29614/t%C3%ADnh-a-1-2-2-3-3-4-n-n-1

~Hok tốt~

4 tháng 7 2019

Lời giải:

Cách 1:

Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó: 

Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a= 1.2.3 - 0.1.2
   a2 = 2.3 → 3a2 = 2.3.3 → 3a= 2.3.4 - 1.2.3
   a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
   …………………..
   an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
   an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)

Cộng từng vế của các đẳng thức trên ta có:

3(a1 + a2 + … + an) = n(n + 1)(n + 2)

Cách 2: Ta có

3A = 1.2.3 + 2.3.3 + … + n(n + 1).3 = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)] = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1) = n(n + 1)(n + 2) 

* Tổng quát hoá ta có:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …

Ta dễ dàng chứng minh công thức trên như sau:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)[(k + 2) - (k - 1)] = 3k(k + 1)

Ai nhanh nhất mình ti k cho 

4 tháng 7 2019

|3x-5| - |x-1| = 6 
3x -5 -x + 1 = 6 
2x - 4 = 6 
2x = 6+4 
2x = 10 
x = 10: 2

x = .5     

                                ~~Hok tốt~~

4 tháng 7 2019

Ta có:

 \(a_k=\frac{3k^2+3k+1}{\left(k^2+k\right)^3}=\frac{k^3+3k^2+3k+1-k^3}{k^3\left(k+1\right)^3}=\frac{\left(k+1\right)^3-k^3}{k^3\left(k+1\right)^3}=\frac{1}{k^3}-\frac{1}{\left(k+1\right)^3}\)

=> \(a_1=\frac{1}{1^3}-\frac{1}{2^3}\)\(a_2=\frac{1}{2^3}-\frac{1}{3^3}\)\(a_3=\frac{1}{3^3}-\frac{1}{4^3}\); ....; \(a_9=\frac{1}{9^3}-\frac{1}{10^3}\)

=> \(1+a_1+a_2+...+a_9=1+1-\frac{1}{2^3}+\frac{1}{2^3}-\frac{1}{3^3}+\frac{1}{3^3}-\frac{1}{4^3}+...+\frac{1}{9^3}-\frac{1}{10^3}\)

\(2-\frac{1}{10^3}=\frac{1999}{1000}\)

Chị quản lí giúp em bài này nữa ạ

1 Cho tam giác ABC cân tại A . Trên cạnh AC lấy điểm D sao cho góc ABD=45 độ - \(\frac{gócBAC}{4}\) VẼ DE // CB(E thuộc AB).Chứng minh

a)Tứ giác BEDC là hình thang cân

b) EB=ED

c) CE là phân giác góc C

4 tháng 7 2019

Đề đúng chưa bạn??

4 tháng 7 2019

Đặt \(\sqrt[3]{3x-2}=a\)

<=> \(\hept{\begin{cases}x^3+2=3a\\a^3+2=3x\end{cases}}\)

=> \(\left(x-a\right)\left(x^2+ax+a^2\right)+3\left(x-a\right)=0\)

<=> \(\left(x-a\right)\left(x^2+ax+x^2+3\right)=0\)

Mà \(x^2+ax+x^2+3>0\)

=> \(x=a\)

=> \(x=\sqrt[3]{3x-2}\)

=> \(x^3-3x+2=0\)

=> \(\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)

Vậy \(\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)

4 tháng 7 2019

2x + 6x^2=3x+9x^2

=> 6x^2 - 9x^2 =  3x-2x

=> -3x^2 = x

=> x = 1 hoặc x =0

Chúc bạn hok tốt !!!

4 tháng 7 2019

\(\left|x+\frac{7}{3}\right|=\left|x-\frac{7}{2}\right|\)

Vì \(x+\frac{7}{3}\ne x-\frac{7}{2}\)nên \(x+\frac{7}{3}=\frac{7}{2}-x\)

\(\Leftrightarrow x+x=\frac{7}{2}-\frac{7}{3}\)

\(\Leftrightarrow2x=\frac{21}{6}-\frac{14}{6}\)

\(\Leftrightarrow2x=\frac{7}{6}\)

\(\Leftrightarrow x=\frac{7}{6}\div2\)

\(\Leftrightarrow x=\frac{7}{12}\)

4 tháng 7 2019

b) \(\left|2x-\frac{1}{3}\right|=\left|3x\left(-\frac{2}{3}\right)\right|\)

\(\Leftrightarrow\left|2x-\frac{1}{3}\right|=\left|-2x\right|\)

\(\Leftrightarrow\orbr{\begin{cases}2x-\frac{1}{3}=-2x\\2x-\frac{1}{3}=2x\end{cases}}\Leftrightarrow\orbr{\begin{cases}4x=\frac{1}{3}\\x\in\left\{\varnothing\right\}\end{cases}}\Leftrightarrow x=\frac{1}{12}\)

Vậy \(x=\frac{1}{12}\)

x O y z

Ta có xOy = 100 độ

yOz = 35 đọ

Suy ra 100 độ - 35 độ = 65 độ

Vậy ......

Hok tốt

Ta có xOy = 100 độ

=> xOz + yOz = xOy

=> xOz  = 100 - 35 = 65 độ

M là trung điểm AB khi 

AM = MB

CM là trung tuyến ∆ABC 

A < B 

Vì 199 < 200

còn hàng thâp phân :

0.21 > 200

Suy ra A < B 

Hok tốt ~

4 tháng 7 2019

A > B

=> Nên  ta có 

A > B nên 199 sẽ < 200

Vậy ko đặt ta có:

A>B

giải thích: Các số trên tương ứng với cách so sánh 

\(P=\left(x^4+1\right)\left(y^4+1\right)=x^4y^4+x^4+y^4+1\)

Ta có \(x^2+y^2=\left(x+y\right)^2-2xy=10-2xy\)

\(\Rightarrow x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left(10-2xy\right)^2-2x^2y^2=100-40xy+2x^2y^2\)

\(\Rightarrow P=\left(xy\right)^4+101-40xy+2x^2y^2\)

\(=\left[\left(xy\right)^4-8\left(xy\right)^2+16\right]+10\left[\left(xy\right)^2-4xy+4\right]+45\)

\(=\left(x^2y^2-4\right)^2+10\left(xy-2\right)^2+45\)

\(\Rightarrow P\ge45\)

Dấu "=" xảy ra khi xy=2

Lại có \(x+y=\sqrt{10}\)

\(\Rightarrow x=\sqrt{10}-y\Rightarrow xy=\sqrt{10}y-y^2=2\)

\(\Rightarrow y^2-\sqrt{10y}+2=0\)

Ta có \(\Delta=10-8=2\)

\(\Rightarrow y=\frac{\sqrt{10}+\sqrt{2}}{2}\)

\(\Rightarrow x=\frac{4}{\sqrt{10}+\sqrt{2}}=\frac{\sqrt{10}-\sqrt{2}}{2}\)

Vậy giá trị nhỏ nhất của P là 45 khi \(\hept{\begin{cases}x=\frac{\sqrt{10}-\sqrt{2}}{2}\\y=\frac{\sqrt{10}+\sqrt{2}}{2}\end{cases}}\)