Tính tổng
A=\(\dfrac{1}{7}\)+\(\dfrac{1}{7^2}\) +\(\dfrac{1}{7^3}\) +....+\(\dfrac{1}{7^{100}}\)
G=\(\dfrac{3}{5}\)+\(\dfrac{3}{5^4}\)+\(\dfrac{3}{5^7}\)+...+\(\dfrac{3}{5^{100}}\)
C=\(\dfrac{1}{2}\)+\(\dfrac{1}{2^3}\)+\(\dfrac{1}{2^5}\)+...+\(\dfrac{1}{2^{99}}\)
A = \(\dfrac{1}{7}\) + \(\dfrac{1}{7^2}\) + \(\dfrac{1}{7^3}\) + ... + \(\dfrac{1}{7^{100}}\)
7A = 7 + \(\dfrac{1}{7}\) + \(\dfrac{1}{7^2}\) + ....+ \(\dfrac{1}{7^{100}}\)
7A - A = (7 + \(\dfrac{1}{7}\) + \(\dfrac{1}{7^2}\) +... + \(\dfrac{1}{7^{99}}\)) - (\(\dfrac{1}{7}\) + \(\dfrac{1}{7^2}\) + \(\dfrac{1}{7^3}\) + ... + \(\dfrac{1}{7^{100}}\))
6A = 7 + \(\dfrac{1}{7}\) + \(\dfrac{1}{7^2}\) + ... + \(\dfrac{1}{7^{99}}\) - \(\dfrac{1}{7}\) - \(\dfrac{1}{7^2}\) - \(\dfrac{1}{7^3}\) - ... - \(\dfrac{1}{7^{100}}\)
6A = (\(\dfrac{1}{7}\) - \(\dfrac{1}{7}\)) + (\(\dfrac{1}{7^2}\) - \(\dfrac{1}{7^2}\)) + (\(\dfrac{1}{7^3}\) - \(\dfrac{1}{7^3}\)) +...+(\(\dfrac{1}{7^{99}}\) - \(\dfrac{1}{7^{99}}\))+ (7 - \(\dfrac{1}{7^{100}}\))
6A = 0 + 0 + ... + 0 + 7 - \(\dfrac{1}{7^{100}}\)
6A = 7 - \(\dfrac{1}{7^{100}}\)
A = (7 - \(\dfrac{1}{7^{100}}\)) : 6
A = \(\dfrac{7}{6}\) - \(\dfrac{1}{6.7^{100}}\)
G = \(\dfrac{3}{5}\) + \(\dfrac{3}{5^4}\) + \(\dfrac{3}{5^7}\) + ... + \(\dfrac{3}{5^{100}}\)
53G = 75 + \(\dfrac{3}{5}\) + \(\dfrac{3}{5^4}\) +... + \(\dfrac{3}{5^{99}}\)
125G - G = (75 + \(\dfrac{3}{5}\) + \(\dfrac{3}{5^4}\) + \(\dfrac{3}{5^7}\) + ... + \(\dfrac{3}{5^{99}}\)) - (\(\dfrac{3}{5}\) + \(\dfrac{3}{5^4}\)+\(\dfrac{3}{5^7}\)+...+\(\dfrac{3}{5^{100}}\))
124G = 75 + \(\dfrac{3}{5}\) + \(\dfrac{3}{5^4}\) + \(\dfrac{3}{5^7}\)+...+ \(\dfrac{3}{5^{99}}\) - \(\dfrac{3}{5}\) - \(\dfrac{3}{5^4}\) - \(\dfrac{3}{5^7}\) - ... - \(\dfrac{3}{5^{100}}\)
124G = (75 - \(\dfrac{3}{5^{100}}\)) + (\(\dfrac{3}{5}\) - \(\dfrac{3}{5}\)) +(\(\dfrac{3}{5^4}\) - \(\dfrac{3}{5^4}\)) +...+ (\(\dfrac{3}{5^{99}}\) - \(\dfrac{3}{5^{99}}\))
124G = 75 - \(\dfrac{3}{5^{100}}\) + 0 + 0 + ... + 0
124G = 75 - \(\dfrac{3}{5^{100}}\)
G = (75 - \(\dfrac{3}{5^{100}}\)): 124
G = \(\dfrac{75}{124}\) - \(\dfrac{3}{124.5^{100}}\)