Một người đi xe đạp trong 5 giờ. Trong 3 giờ đầu, người đó đi với vận tốc 14 km/h; 2 giờ sau, người đi với vận tốc 9km/h. Tính quãng đường người đó đi được trong 5 giờ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Hiệu đáy lớn và đáy bé là:
$141\times 2: 23=\frac{282}{23}$ (m)
Đáy bé hình thang:
$\frac{282}{23}: (5-3).3=\frac{423}{23}$ (m)
Đáy lớn hình thang:
$\frac{282}{23}: (5-3).5=\frac{705}{23}$ (m)
Diện tích hình thang lúc đầu:
$(\frac{423}{23}+\frac{705}{23}).23:2=564$ (m2)
\(5A=5+5^2+5^3+..+5^{151}\)
\(5A-A=\left(5+5^2+...+5^{151}\right)-\left(1+5+..+5^{150}\right)\)
\(4A=5^{151}-1\)
\(A=\dfrac{5^{151}-1}{4}\)
Nếu mình không nhầm thì dấu chia bạn đánh nhầm thành dấu chia hết
=> A < B
1) \(3^x+3^{x+1}+3^{x+2}=351\)
\(\Rightarrow3^x\left(1+3^1+3^2\right)=351\)
\(\Rightarrow3^x.13=351\)
\(\Rightarrow3^x=27\)
\(\Rightarrow3^x=3^3\)
\(\Rightarrow x=3\)
2) \(C=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)
\(\Rightarrow C=\left(2+2^2+2^3+2^4\right)+2^4\left(2+2^2+2^3+2^4\right)...+2^{96}\left(2+2^2+2^3+2^4\right)\)
\(\Rightarrow C=30+2^4.30...+2^{96}.30\)
\(\Rightarrow C=\left(1+2^4+...+2^{96}\right).30⋮30\)
mà \(30=5.6\)
\(\Rightarrow C⋮5\left(dpcm\right)\)
1,
Có \(3^x\)+ \(3^{x+1}\) + \(3^{x+2}\) = \(351\)
=> \(3^x\) + \(3^x\).\(3\) + \(3^x\).\(9\) = \(351\)
=> \(3^x\).\(13\) = \(351\)
=> \(3^x\) = \(27\)
=> \(x\) = \(3\)
2,
C = \(2\) + \(2^2\) + \(2^3\) + ... + \(2^{100}\)
2C = \(2^2\) + \(2^3\) + \(2^4\) + ... + \(2^{101}\)
2C - C = \(2^{101}\) - \(2\)
C = \(2^{101}\) - \(2\)
C = \(2\).\(\left(2^{100}-1\right)\)
C = 2.\(\left(\left(2^5\right)^{20}-1^{20}\right)\)
Có \(2^5\) \(-1\) \(⋮\) 5
=> \(\left(\left(2^5\right)^{20}-1^{20}\right)\) \(⋮\) 5
=> C \(⋮\) 5
3,
Xét \(\overline{abcdeg}\)
= \(\overline{ab}\).\(10000\) + \(\overline{cd}\).\(100\) + \(\overline{eg}\)
= \(\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\) + \(9.\left(1111.\overline{ab}+11.\overline{cd}\right)\)
Có\(\left\{{}\begin{matrix}9.\left(1111.\overline{ab}+11.\overline{cd}\right)⋮9\left(1111.\overline{ab}+11.\overline{cd}\inℕ^∗\right)\\\overline{ab}+\overline{cd}+\overline{eg}⋮9\end{matrix}\right.\)
=> \(\overline{abcdeg}⋮9\)
4,
S = \(3^0+3^2+3^4+...+3^{2002}\)
9S = \(3^2+3^4+3^6+...+3^{2004}\)
9S - S = \(3^2+3^4+3^6+...+3^{2004}\) - (\(3^0+3^2+3^4+...+3^{2002}\))
8S = \(3^{2004}-1\)
=> 8S \(< 3^{2004}\)
\(B=\dfrac{2n+6}{n-5}=\dfrac{2n-10+16}{n-5}=\dfrac{2\left(n-5\right)+16}{n-5}=2+\dfrac{16}{n-5}\)
Để \(B=2+\dfrac{16}{n-5}\inℤ\)
\(\Rightarrow n-5\in\left\{-1;1;-2;2;-4;4;-8;8;-16;16\right\}\)
\(\Rightarrow n\in\left\{4;6;3;7;1;9;-3;13;-11;21\right\}\)
Hiệu số giữa 601 và số hạng đầu tiên của dãy :
\(\left(100-1\right)x6=594\)
Số hạng đầu tiên của dãy là :
\(601-594=7\)
Số hạng thứ 60 của dãy là :
\(\left(60-1\right)x6+7=361\)
Có (3x - \(\dfrac{1}{6}\))2 ≥ 0 ∀ x; |2y-6| ≥ 0 ∀ y
=> (3x - \(\dfrac{1}{6}\))2 + |2y-6| ≥ 0 ∀x,y
Mà (3x - \(\dfrac{1}{6}\))2 + |2y-6| ≤ 0
=> (3x - \(\dfrac{1}{6}\))2 = 0; |2y - 6| = 0
=> x = \(\dfrac{1}{18}\); y = 3;
=> A = \(\left(\dfrac{1}{18}\right)^2\) + 32 = \(9\dfrac{1}{324}\)
Mỗi bể chứa số lít xăng là: 15429 : 3 = 5143 lít xăng
Quãng đường người đó đi trong 3 giờ đầu là:
14 x 3 = 42 km
Quãng đường người đó đi trong 2 giờ sau là:
9 x 2 = 18 km
Quãng đường người đó đi trong 5 giờ là:
42 + 18 = 60 km
3 giờ đầu người đó đi đc số km là:
14.3=42(km)
2 giờ sau người đó đi đc số km là:
9.2=18(km)
Quãng đường người đó đi dc là:
18+42=60(km)