K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2019

Gọi vận tốc của đội 1 và 2 trong 1 ngày lần lượt là x,y(x,y>0)

theo đề bài ,ta có

15(x+y)=1 hay 15x+15y=1 hay \(x=\frac{1-15y}{15}\)(1)

và 5(x+y)+24x=1 hay 29x+5y =1(**)

Thay (1)vào (**), ta có

\(29\frac{1-15y}{15}+5y=1\Rightarrow y=\frac{7}{180}\Rightarrow x=\frac{1}{36}\)

Vậy đội 1 làm trong 36 ngày

       đội 2 làm trong180/7 ngày

14 tháng 3 2019

3/ \(x^2=2\left(y-2\right)^2-5\Rightarrow\left(\sqrt{2}y-2\sqrt{2}\right)^2-x^2=5\)

\(\Leftrightarrow\left(\sqrt{2}y-2\sqrt{2}+x\right)\left(\sqrt{2}y-2\sqrt{2}-x\right)=5\)

Lập bảng giải ra tiếp.

P/s: Cách này có vẽ không hay lắm thiết nghĩ dùng delta sẽ hay hơn nhưng để thử=)

14 tháng 3 2019

4) \(x^2+x\left(y-2\right)+\left(y^2-y\right)=0\)

Pt trên có ẩn x.

\(\Delta=\left(y-2\right)^2-4\left(y^2-y\right)\ge0\)

\(\Leftrightarrow-3y^2+4\ge0\Leftrightarrow-\frac{2\sqrt{3}}{3}\le y\le\frac{2\sqrt{3}}{3}\)

Do y nguyên nên \(-1\le y\le1\).

Làm nốt

14 tháng 3 2019

\(x^4+13x^2+36=x^4+4x^2+9x^2+36\)

\(=x^2\left(x^2+4\right)+9\left(x^2+4\right)=\left(x^2+9\right)\left(x^2+4\right)\)

14 tháng 3 2019

       \(x^4+13x^2+36\)

<=> \(x^4+9x^2+4x^2+36\)

<=> \(x^2\left(x^2+9\right)+4\left(x^2+9\right)\)

<=> \(\left(x^2+9\right)\left(x^2+4\right)\)

14 tháng 3 2019

Pt đã cho \(\Leftrightarrow3x+10x+8+2x+20x+48=9x+6x-36\Leftrightarrow35x+56=15x-36\Leftrightarrow20x=-92\)

\(\Rightarrow x=\frac{-23}{5}\)

H2 + CuO ---> Cu + H2O

x        x           x

a) xuất hiện các tinh thể đồng (màu đồng) trong ống nghiệm và có hơi nước bám trên thành ống nghiệm.

b) Số mol CuO ban đầu = 20/80 = 0,25 mol. Gọi x là số mol CuO đã tham gia phản ứng. Số mol CuO còn dư = 0,25 - x mol. Số mol Cu là x mol.

Khối lượng chất rắn sau phản ứng = khối lượng CuO dư + khối lượng Cu = 80(0,25-x) + 64x = 16,8. Thu được x = 0,2 mol.

Số mol H2 = x = 0,2 mol. Nên V = 0,2.22,4 = 4,48 lít.

14 tháng 3 2019

Áp dụng bđt AM-GM:

\(x^2y^2+y^2z^2\ge2\sqrt{x^2y^4z^2}=2xy^2z\)

\(y^2z^2+z^2x^2\ge2\sqrt{x^2y^2z^{^4}}=2xyz^2\)

\(x^2y^2+z^2x^2\ge2\sqrt{x^4y^2z^2}=2x^2yz\)

Cộng theo vế và rút gọn: \(x^2y^2+y^2z^2+z^2x^2\ge x^2yz+xy^2z+xyz^2\)

\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2-x^2yz-xy^2z-xyz^2\ge0\left(đpcm\right)\)

14 tháng 3 2019

\(\left(xy-yz\right)^2=x^2y^2-2xy^2z+y^2z^2\ge0\)

\(\Rightarrow x^2y^2+y^2z^2\ge2xy^2z\)

Thiết lập hai BĐT còn tại tương tự và cộng theo vế và chia cho 2:

\(x^2y^2+y^2z^2+z^2x^2\ge x^2yz+y^2xz+z^2xy\)

Chuyển vế ta có đpcm.

Dấu "=" xảy ra khi \(xy=yz=zx\Leftrightarrow x=y=z\)

14 tháng 3 2019

\(\frac{x-1}{2013}+\frac{x-2}{2012}+\frac{x-3}{2011}=\frac{x-4}{2010}+\frac{x-5}{2009}+\frac{x-6}{2008}\)

\(\Leftrightarrow\)\(\left(\frac{x-1}{2013}-1\right)+\left(\frac{x-2}{2012}-1\right)+\left(\frac{x-3}{2011}-1\right)=\left(\frac{x-4}{2010}-1\right)+\left(\frac{x-5}{2009}-1\right)+\left(\frac{x-6}{2008}-1\right)\)

\(\Leftrightarrow\frac{x-2014}{2013}+\frac{x-2014}{2012}+\frac{x-2013}{2011}=\frac{x-2014}{2010}+\frac{x-2014}{2009}+\frac{x-2014}{2008}\)

\(\Leftrightarrow\left(x-2014\right)\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)

tự làm nốt~

14 tháng 3 2019

kudo shinichi làm sai ở chỗ:

\(\frac{x-2013}{2011}\)phải là \(\frac{x-2014}{2011}\)mới đúng nhé