K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2019

Ta có: \(\sqrt{x^2-3x}=-x^2+3x+6\)

\(\Leftrightarrow\left(\sqrt{x^2-3x}\right)^2=\left(-x^2+3x+6\right)^2\)

\(\Leftrightarrow x^2-3x=x^4+9x^2+36+2\left(-3x^3+18x-6x^2\right)\)

\(\Leftrightarrow x^2-3x=x^4+9x^2+36-6x^3+36x-12x^2\)

\(\Leftrightarrow x^4+9x^2+36-6x^3+36x-12x^2-x^2+3x=0\)

\(\Leftrightarrow x^4-6x^3-4x^2+39x+36=0\)

\(\Leftrightarrow x^4-4x^3-2x^3+8x^2-12x^2+48x-9x+36=0\)

\(\Leftrightarrow\left(x^4-4x^3\right)-\left(2x^3-8x^2\right)-\left(12x^2-48x\right)-\left(9x-36\right)=0\)

\(\Leftrightarrow x^3\left(x-4\right)-2x^2\left(x-4\right)-12x\left(x-4\right)-9\left(x-4\right)=0\)

\(\Leftrightarrow\left(x^3-2x^2-12x-9\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left(x^3+x^2-3x^2-3x-9x-9\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left(x^2-3x-9\right)\left(x+1\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[\left(x-\frac{3}{2}\right)^2-\left(\sqrt{\frac{45}{4}}\right)^2\right]\left(x+1\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-\frac{3}{2}+\frac{\sqrt{45}}{2}\right)\left(x-\frac{3}{2}-\frac{\sqrt{45}}{2}\right)\left(x+1\right)\left(x-4\right)=0\)

... bạn tự giải tiếp nha

14 tháng 5 2019

Có thể làm theo cách sau : 

\(\sqrt{x^2-3x}=-x^2+3x+6\)

\(\Leftrightarrow x^2-3x+\sqrt{x^2-3x}-6=0\)

Đặt \(\sqrt{x^2-3x}=a\) ( >= 0 ) . Ta có : 

\(a^2+a-6=0\) . Rồi bn giải tiếp nha 

15 tháng 5 2019

có thể nói cách giải hk?

13 tháng 5 2019

= 6 đúng ko bn

13 tháng 5 2019

mik nhầm phải = 9 chứ hihi

13 tháng 5 2019

\(1.x^2+x-6>0\)

\(\Leftrightarrow x^2-x+6x-6>0\)

\(\Leftrightarrow x\left(x-1\right)+6\left(x-1\right)>0\)

\(\Leftrightarrow\left(x-1\right)\left(x+6\right)>0\)

TH1:\(\hept{\begin{cases}x-1>0\\x+6>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>1\\x>-6\end{cases}}\Leftrightarrow x>1}\)

TH2:\(\hept{\begin{cases}x-1< 0\\x+6< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x< -6\end{cases}\Leftrightarrow}x< -6}\)

\(2.x^2+7x+12\le0\)

\(\Leftrightarrow x^2+3x+4x+12\le0\)

\(\Leftrightarrow\left(x+3\right)\left(x+4\right)\le0\)

TH1:\(\hept{\begin{cases}x+3\ge0\\x+4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-3\\x\le-4\end{cases}\left(l\right)}}\)

TH2:\(\hept{\begin{cases}x+3\le0\\x+4\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le-3\\x\ge-4\end{cases}\Leftrightarrow}-4\le x\le-3\left(n\right)}\)

\(3.\) \(\left(x-2\right)\left(x+6\right)\left(2x+5\right)\le0\)

TH1:\(\hept{\begin{cases}x-2\ge0\\x+6\ge0\\2x+5\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge2\\x\ge-6\\x\le-\frac{5}{2}\end{cases}}}\left(l\right)\)

TH2:(loại)

TH3:\(\hept{\begin{cases}x-2\le0\\x+6\ge0\\2x+5\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le2\\x\ge-6\\x\ge-\frac{5}{2}\end{cases}\Leftrightarrow}-\frac{5}{2}\le x\le2}\)

Và còn nhiều TH khác nữa tự tìm nhé

\(4.\) \(\left(1-x\right)\left(x^2-6\right)>0\)

TH1:\(\hept{\begin{cases}1-x>0\\x^2-6>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x>\sqrt{6}\end{cases}\left(l\right)}}\)

TH2:\(\hept{\begin{cases}1-x< 0\\x^2-6< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>1\\x< \sqrt{6}\end{cases}\Leftrightarrow}1< x< \sqrt{6}\left(n\right)}\)

11 tháng 5 2019

Em có cách này anh/chị check thử ạ.

Dự đoán xảy ra cực trị tại: x = 2; y = 1; z = 0

Áp dụng BĐT quen thuộc: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\),ta có: \(1\ge\frac{1}{x+1}+\frac{1}{y+2}+\frac{1}{z+3}\ge\frac{9}{x+y+z+6}\)

\(\Rightarrow x+y+z+6\ge9\Leftrightarrow x+y+z\ge3\)

Đặt \(t=x+y+z\ge3\).Ta cần tìm min của: \(P\left(t\right)=t+\frac{1}{t}\) với \(t\ge3\)

Ta có: \(P\left(t\right)=t+\frac{1}{t}=\left(\frac{t}{9}+\frac{1}{t}\right)+\frac{8t}{9}\)

\(\ge2\sqrt{\frac{t}{9}.\frac{1}{t}}+\frac{8t}{9}=\frac{2}{3}+\frac{8t}{9}\ge\frac{2}{3}+\frac{8.3}{9}=\frac{10}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}t=3\\\frac{1}{x+1}=\frac{1}{y+2}=\frac{1}{z+3}=\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y+z=3\\x+1=y+2=z+3=3\left(2\right)\end{cases}}\)

Giải (2) ta được x = 2; y = 1; z = 0 (t/m x + y + z = 3)

Vậy \(P_{min}=\frac{10}{3}\Leftrightarrow x=2;y=1;z=0\)

10 tháng 5 2019

ĐK x=2016

=>0>0( vô lý)

=>bất  phương trình vô nghiệm