Tìm tất cả các số có 2 chữ số xy thỏa mãn A chia hết 37, với
A=100...0100...0xy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)Ta có: \(a^{2000}+b^{2000}=a^{2001}+b^{2001}\)
\(\Rightarrow a^{2001}+b^{2001}\)\(-a^{2000}-b^{2000}=0\)
\(\Rightarrow a^{2000}\left(a-1\right)+b^{2000}\left(b-1\right)=0\)(1)
và \(a^{2001}+b^{2001}=a^{2002}+b^{2002}\)
\(\Rightarrow a^{2002}+b^{2002}\)\(-a^{2001}-b^{2001}=0\)
\(\Rightarrow a^{2001}\left(a-1\right)+b^{2001}\left(b-1\right)=0\)(2)
Lấy (2) - (1), ta được: \(a^{2000}\left(a-1\right)^2+b^{2000}\left(b-1\right)^2=0\)(3)
Mà \(a^{2000}\left(a-1\right)^2\ge0\forall a\)và \(b^{2000}\left(b-1\right)^2\ge0\forall b\)
nên (3) xảy ra\(\Leftrightarrow\hept{\begin{cases}a^{2000}\left(a-1\right)^2=0\\b^{2000}\left(b-1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1hoaca=0\\b=1hoacb=0\end{cases}}\)
Mà a,b dương nên a = 1 và b = 1
a) Áp dụng BĐT Svac - xơ:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=9\)
(Dấu "="\(\Leftrightarrow a=b=c=\frac{1}{3}\))
\(\frac{5}{21}\)+ \(0,5\) - \(\frac{19}{23}+\frac{16}{21}-\frac{4}{23}\)= 0,5
Chúc học tốt!!!
\(\left(1-x\right)\frac{3}{x^3-1}\)
\(=\left(x-1\right)\frac{-3}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\frac{-3}{x^2+x+1}\)
\(\Leftrightarrow\left(a+b+c\right).\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)
\(\Leftrightarrow\frac{a\left(a+b+c\right)}{b+c}+\frac{b\left(a+b+c\right)}{c+a}+\frac{c\left(a+b+c\right)}{a+b}=a+b+c\)
\(\Leftrightarrow\frac{a^2+a.\left(b+c\right)}{b+c}+\frac{b^2+b.\left(c+a\right)}{c+a}+\frac{c^2+c.\left(a+b\right)}{a+b}=a+b+c\)
\(\Leftrightarrow\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c=a+b+c\)
\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\left(dpcm\right)\)
Hiệu của hai số là 38,07 . Nếu dời dấu phẩy của số lớn sang trái 1 hàng thì đc số bé . Tìm hai số đó
Ta có : Nếu dời dấu phẩy của số lớn sang trái 1 hàng thì được số bé
=> Số lớn gấp 10 lần số bé
Gọi số lớn là 10 phần ; số bé là 1 phần
=> Hiệu số phần bằng nhau là : 10 - 1 = 9 phần
=> Số lớn là : 38,07 : 9 x 10 = 42,3
=> Số bé là : 42,3 - 38,07 = 4,23
Ta có \(\widehat{ACH}+\widehat{ECK}=90^o\)\(\left(\widehat{ACE}=90^o\right)\)
Mà \(\widehat{ECK}+\widehat{CEK}=90^o\)
\(\Rightarrow\widehat{ACH}=\widehat{CEK}\)
Xét \(\Delta AHC\)và \(\Delta CKE\)ta có :
\(\widehat{H}=\widehat{K}\left(=90^o\right)\)
\(AC=CE\left(gt\right)\)
\(\widehat{ACH}=\widehat{CEK}\left(cmt\right)\)
\(\Rightarrow\Delta AHC=\Delta CKE\left(ch-gn\right)\)
\(\Rightarrow AH=CK\)( hai cạnh tương ứng ) \(\left(1\right)\)
Chứng minh tương tự, ta cũng có :
\(\Delta DIB=\Delta BHA\left(ch-gn\right)\)\(\Rightarrow IB=AH\)( hai cạnh tương ứng ) \(\left(2\right)\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow BI=CK\left(đpcm\right)\)
Chúc em gái chị học tốt nhé ^^
Ta chứng minh với a,b > 0 thì : \(\frac{a^4+b^4}{ab\left(a^3+b^3\right)}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Leftrightarrow2ab\left(a^4+b^4\right)\ge ab\left(a+b\right)\left(a^3+b^3\right)\)\(\Leftrightarrow2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
\(\Leftrightarrow a^4+b^4\ge ab^3+ba^3\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)( luôn đúng )
Gọi biểu thức là A
Ta có : \(A\ge\frac{1}{2}.\left(2.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ac}{abc}=1\)
Có thể xem thêm cách khác trong câu hỏi tương tự
Dễ dàng CM đc: \(\left(a^3+b^3\right)^2\le\left(a^4+b^4\right)\left(a^2+b^2\right)\)
Andddd \(ab+bc+ca=abc\)\(\Leftrightarrow\)\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
\(\Sigma\frac{a^4+b^4}{ab\left(a^3+b^3\right)}\ge\Sigma\frac{\frac{\left(a^3+b^3\right)^2}{a^2+b^2}}{ab\left(a^3+b^3\right)}=\Sigma\frac{a^3+b^3}{ab\left(a^2+b^2\right)}\ge\Sigma\frac{\frac{\left(a^2+b^2\right)^2}{a+b}}{ab\left(a^2+b^2\right)}=\Sigma\frac{a^2+b^2}{ab\left(a+b\right)}\)
\(\ge\Sigma\frac{\frac{\left(a+b\right)^2}{2}}{ab\left(a+b\right)}=\Sigma\frac{a+b}{2ab}=\frac{1}{2}\Sigma\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Dấu "=" xảy ra khi a=b=c=3