Cho \(a,b\inℤ\)\(⋮̸\)\(7\)\(.\)\(CM:a^{42}-b^{42}⋮49.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^7-a=a\left(a^6-1\right)=a\left(a^3+1\right)\left(a^3-1\right)\)
\(a,5x\left(x-1\right)=x-1\)
\(\Rightarrow5x\left(x-1\right)-x+1=0\)
\(\Rightarrow5x\left(x-1\right)-\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(5x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\5x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\5x=1\end{cases}\Rightarrow}\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}}\)
\(b,2\left(x-7\right)-x^2+7x=0\)
\(\Rightarrow2\left(x-7\right)-x\left(x-7\right)=0\)
\(\Rightarrow\left(x-7\right)\left(2-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-7=0\\2-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=7\\x=2\end{cases}}}\)
a, x2(x - 3) + 12 - 4x = 0
<=> x2(x - 3) + 4(3 - x) = 0
<=> x2(x - 3) - 4(x - 3) = 0
<=> (x - 3)(x2 - 4) = 0
<=> x - 3 = 0 hoặc x2 - 4 = 0
<=> x = 3 x2 = 4
<=> x = 3 x = 2 hoặc x = -2
b, 2(x + 5) - x2 - 5x = 0
<=> 2(x + 5) - x(x + 5) = 0
<=> (x + 5)(2 - x) = 0
<=> x + 5 = 0 hoặc 2 - x = 0
<=> x = -5 x = 2
c, 2x(x + 2019) - x - 2019 = 0
<=> 2x(x + 2019) - (x + 2019) = 0
<=> (x + 2019)(2x - 1) = 0
<=> x + 2019 = 0 hoặc 2x - 1 = 0
<=> x = -2019 2x = 1
<=> x = -2019 x = 1/2
1) Vì AH\(\perp\)DC
BK\(\perp\)DC
=> AH//BK
Mà BAH + AHK = 180° ( trong cùng phía)
=> BAH = 90°
Mà ABK + BKH = 180° ( trong cùng phía)
=> ABK = 90°
Mà BAH = AHK = 90°
Mà 2 góc này ở vị trí trong cùng phía
=> AB//HK
=> ABKH là hình thang cân
=> ABKH là hình thang cân
=> AB = HK , AH = BK
b) Vì ABCD là hình thang cân
=> AD = BC
=> ADC = BCD
Xét ∆ vuông AHD và ∆ vuông BKC ta có :
AD = BC
ADC = BCD
=> ∆AHD = ∆BKC (ch-gn)
Mà DH = KC ( tương ứng)
c) Ta có :
DH + HK + KC = DC
Mà HK = AB
=> DH + AB + KC = DC
DH + KC = DC - AB
Mà DH = KC
=> DH = \(\frac{1}{2}\)( CD - AB )
\(\left[...\right]=\left[n+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}\right)\right]=\left[n+1-\frac{1}{n+1}\right]=\left[n+\frac{n}{n+1}\right]\)
Do n dương nên \(\frac{n}{n+1}< 1\)\(\Rightarrow\)\(\left[n+\frac{n}{n+1}\right]=n\)
Ta có \(\frac{a}{b^3-1}=\frac{a}{\left(b-1\right)\left(b^2+b+1\right)}=-\frac{1}{b^2+b+1}\)(Vì \(a+b=1\))
Từ đó, với \(a+b=1\)ta biến đổi VT của đẳng thức cần chứng minh như sau:
\(VT=-\left(\frac{1}{a^2+a+1}+\frac{1}{b^2+b+1}\right)=\frac{-\left(a^2+b^2+a+b+2\right)}{a^2b^2+a^2b+ab^2+ab+a^2+b^2+a+b+1}\)
\(=\frac{-\left[\left(a+b\right)^2-2ab+a+b+2\right]}{a^2b^2+ab\left(a+b+1\right)+\left(a+b\right)^2-2ab+a+b+1}=\frac{2\left(ab-2\right)}{a^2b^2+3}=VP\)
Vậy có ĐPCM.
Với a, b thuộc Z và không chia hết cho 7
Theo định lí fecmat: \(a^6\equiv1\left(mod7\right)\); \(b^6\equiv1\left(mod7\right)\)(1)
Đặt: \(a^6=u;b^6=v\)
Ta có: \(a^{42}-b^{42}=u^7-v^7=\left(u-v\right)\left(u^6+u^5v+u^4v^2+u^3v^3+u^2v^4+uv^5+v^6\right)\)
Từ (1) => \(u-v\equiv1-1\equiv0\left(mod7\right)\)=> \(u-v⋮7\)
và \(u^6;u^5v;u^4v^2;u^3v^3;u^2v^4;uv^5;v^6\equiv1\left(mod7\right)\)
\(\Rightarrow u^6+u^5v+u^4v^2+u^3v^3+u^2v^4+uv^5+v^6\equiv1+1+1+1+1+1+1\equiv7\equiv0\left(mod7\right)\)
=> \(u^6+u^5v+u^4v^2+u^3v^3+u^2v^4+uv^5+v^6⋮7\)
=> \(\left(u-v\right)\left(u^6+u^5v+u^4v^2+u^3v^3+u^2v^4+uv^5+v^6\right)⋮49\)