K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2019

Với a, b  thuộc Z và không chia hết cho 7

Theo định lí fecmat:  \(a^6\equiv1\left(mod7\right)\)\(b^6\equiv1\left(mod7\right)\)(1)

Đặt: \(a^6=u;b^6=v\)

Ta có: \(a^{42}-b^{42}=u^7-v^7=\left(u-v\right)\left(u^6+u^5v+u^4v^2+u^3v^3+u^2v^4+uv^5+v^6\right)\)

Từ (1) => \(u-v\equiv1-1\equiv0\left(mod7\right)\)=> \(u-v⋮7\)

và  \(u^6;u^5v;u^4v^2;u^3v^3;u^2v^4;uv^5;v^6\equiv1\left(mod7\right)\) 

\(\Rightarrow u^6+u^5v+u^4v^2+u^3v^3+u^2v^4+uv^5+v^6\equiv1+1+1+1+1+1+1\equiv7\equiv0\left(mod7\right)\)

=> \(u^6+u^5v+u^4v^2+u^3v^3+u^2v^4+uv^5+v^6⋮7\)

=> \(\left(u-v\right)\left(u^6+u^5v+u^4v^2+u^3v^3+u^2v^4+uv^5+v^6\right)⋮49\)

\(a^7-a=a\left(a^6-1\right)=a\left(a^3+1\right)\left(a^3-1\right)\) 

               

5 tháng 8 2019

Rồi sao nữa ?

\(a,5x\left(x-1\right)=x-1\)

\(\Rightarrow5x\left(x-1\right)-x+1=0\)

\(\Rightarrow5x\left(x-1\right)-\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(5x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\5x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\5x=1\end{cases}\Rightarrow}\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}}\)
\(b,2\left(x-7\right)-x^2+7x=0\)

\(\Rightarrow2\left(x-7\right)-x\left(x-7\right)=0\)

\(\Rightarrow\left(x-7\right)\left(2-x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-7=0\\2-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=7\\x=2\end{cases}}}\)

5 tháng 8 2019

a, x2(x - 3) + 12 - 4x = 0

<=> x2(x - 3) + 4(3 - x) = 0

<=> x2(x - 3) - 4(x - 3) = 0

<=> (x - 3)(x2 - 4) = 0

<=> x - 3 = 0    hoặc   x2 - 4 = 0

<=> x = 3                    x2 = 4

<=> x = 3                    x = 2 hoặc x = -2

b, 2(x + 5) - x2 - 5x = 0

<=>  2(x + 5) - x(x + 5) = 0

<=> (x + 5)(2 - x) = 0

<=> x + 5 = 0   hoặc 2 - x = 0

<=> x = -5                  x = 2

c, 2x(x + 2019) - x - 2019 = 0

<=> 2x(x + 2019) - (x + 2019) = 0

<=> (x + 2019)(2x - 1) = 0

<=> x + 2019 = 0  hoặc  2x - 1 = 0

<=> x = -2019                 2x = 1

<=> x = -2019                  x = 1/2

1) Vì AH\(\perp\)DC 

BK\(\perp\)DC 

=> AH//BK 

Mà BAH + AHK = 180° ( trong cùng phía) 

=> BAH = 90° 

Mà ABK + BKH = 180° ( trong cùng phía) 

=> ABK = 90° 

Mà BAH = AHK = 90° 

Mà 2 góc này ở vị trí trong cùng phía 

=> AB//HK 

=> ABKH là hình thang cân 

=> ABKH là hình thang cân 

=> AB = HK , AH = BK

b) Vì ABCD là hình thang cân 

=> AD = BC 

=> ADC = BCD 

Xét ∆ vuông AHD và ∆ vuông BKC ta có : 

AD = BC 

ADC = BCD 

=> ∆AHD = ∆BKC (ch-gn)

Mà DH = KC ( tương ứng) 

c) Ta có : 

DH + HK + KC = DC

Mà HK = AB 

=> DH + AB + KC = DC

DH + KC = DC - AB 

Mà DH = KC 

=> DH = \(\frac{1}{2}\)( CD - AB )

thêm hình cho bài nó hoàn chỉnh :))

A B D C H K

3 tháng 8 2019

\(\left[...\right]=\left[n+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}\right)\right]=\left[n+1-\frac{1}{n+1}\right]=\left[n+\frac{n}{n+1}\right]\)

Do n dương nên \(\frac{n}{n+1}< 1\)\(\Rightarrow\)\(\left[n+\frac{n}{n+1}\right]=n\)

7 tháng 8 2019

Ta có \(\frac{a}{b^3-1}=\frac{a}{\left(b-1\right)\left(b^2+b+1\right)}=-\frac{1}{b^2+b+1}\)(Vì \(a+b=1\))

Từ đó, với \(a+b=1\)ta biến đổi VT của đẳng thức cần chứng minh như sau:

\(VT=-\left(\frac{1}{a^2+a+1}+\frac{1}{b^2+b+1}\right)=\frac{-\left(a^2+b^2+a+b+2\right)}{a^2b^2+a^2b+ab^2+ab+a^2+b^2+a+b+1}\)

\(=\frac{-\left[\left(a+b\right)^2-2ab+a+b+2\right]}{a^2b^2+ab\left(a+b+1\right)+\left(a+b\right)^2-2ab+a+b+1}=\frac{2\left(ab-2\right)}{a^2b^2+3}=VP\)

Vậy có ĐPCM.