Một trường THPT nhận được $650$ hồ sơ đăng kí thi tuyển sinh vào lớp $10$ với hai hình thức: đăng kí trực tuyến và đăng kí trực tiếp tại nhà trường. Số hồ sơ đăng kí trực tuyến nhiều hơn số hồ sơ đăng kí trực tiếp là $120$ hồ sơ. Hỏi nhà trường đã nhận bao nhiêu hồ sơ đăng kí trực tuyến?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có a + b + c = 1 + 5 - 6 = 0
Vậy pt có 2 nghiệm x = 1 ; x = -6
b, \(x^2-2mx+4m-4=0\)
\(\Delta'=m^2-4m+4=\left(m-2\right)^2\ge0\)
Vậy pt luôn có 2 nghiệm
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4m-4\end{matrix}\right.\)
\(\left(x_1+x_2\right)^2-2x_1x_2-8=0\)
\(\Leftrightarrow4m^2-2\left(4m-4\right)-8=0\Leftrightarrow4m^2-8m=0\Leftrightarrow m=0;m=2\)
a) \(x^2+5x-6\) = 0
Ta có: a + b + c = 1 + 5 + ( - 6 ) = 0
⇔ \(\left\{{}\begin{matrix}x_1=1\\x_2=-6\end{matrix}\right.\)
Vậy S = \(\left\{1;-6\right\}\)
b) \(x^2-2mx+4m-4=0\)
Δ' = \(\left(-m\right)^2\) - ( 4m - 4 )
Δ' = \(m^2\) - 4m +4
\(\left(m-2\right)^2\ge0\forall m\ne2\)
Vậy phương trình luôn có 2 nghiệm
* Theo định lí Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4m-4\end{matrix}\right.\)
* Theo đề bài : \(x_1^2+x_2^2-8=0\)
⇔ \(\left(x_1+x_2\right)^2-2x_1x_2-8=0\)
⇒ \(\left(2m\right)^2\)- 2.( 4m - 4 ) - 8 = 0
⇔ \(4m^2\) - 8m + 8 - 8 = 0
⇔ \(4m^2\) - 8m = 0
⇔ 4m.( m - 2 ) = 0
⇔ \(\left[{}\begin{matrix}4m=0\\m-2=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}m=0\left(thoảmãn\right)\\m=2\left(loại\right)\end{matrix}\right.\)
Vậy m = 0 thì t/m đề bài
a, \(M=5\sqrt{3}-2\sqrt{3}-4\sqrt{3}+\sqrt{3}=0\)
b, Với x >= 0 ; x khác 1
\(P=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-4\sqrt{x}+3}{x-1}=\dfrac{x}{x-1}\)
Bài 1 :
a, Ta có AE ; BF là đường cao
Xét tứ giác AFEB có
^AFB = ^AEB = 900
mà 2 góc này kề, cùng nhìn cạnh AB
Vậy tứ giác AFEB là tứ giác nt 1 đường tròn
b, +) Kẻ tiếp tuyến KC với C là tiếp điểm
Ta có ^KAC = ^CBA ( cùng chắn cung CA )
^ABC = ^CFE ( góc ngoài đỉnh F của tứ giác AFEB )
=> ^EFC = ^KCA mà 2 góc này ở vị trí so le trong => EF // CK
mà OC vuông CK vì CK là tiếp tuyến => EF vuông CK
a/
Ta có D và E cùng nhìn AH dưới 1 góc vuông => ADHE là tứ giác nội tiếp đường tròn đường kính AH
b/
Xét tứ giác BCDE có D và E cùng nhìn BC dưới 1 góc vuông => BCDE là tứ giác nội tiếp đường tròn đường kính BC
=> ^ABD=^ACE (góc nội tiếp cùng chắn cung ED)
Xét tam giác vuông ABD có
^ABD=90-^BAC=90-45=45
=> ^ACE=^ABD=45
Xét tg vuông CDH có
^DHC=90-^ACE=90-45=45=^ACE
=> tg DHC là tg vuông cân tại D => CD=HD
=> CH=sqrt(CD^2+HD^2)=HD.sqrt(2)
Xét tg EDH và tg BCH có
^EDH=^BCH (góc nội tiếp cùng chắn cung BE của tứ giác nội tiếp BCDE)
^EHD=^BHC ( góc đối đỉnh)
=> tg EDH đồng dạng với tg BCH (g.g.g)
=> DE/BC=HD/CH=HD/(HD.sqrt2)=1/sqrt(2) \(\)
a, Theo định lí Pytag tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=15cm\)
b, Áp dụng hệ thức \(BC.AH=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{36}{5}cm\)
a) Đặt chiều dài là a, chiều rộng là b ta có:
2(a+b) = 24 => a+b =12 (1)
Diện tích của mảnh đất là S= a.b
Tăng chiều dài 2m, giảm chiều rộng 1m diện tích sẽ là :
(a+2)(b-1) = a.b -a + 2b - 2
= S -a + 2b - 2= S+1
=>2b - a - 3 =0 => a = 2b -3 (2)
Thế (2) vào (1) ta có: 2b - 3 + b = 12 => 3b = 15 => b = 5, a = 12-5 = 7
Vậy chiều dài là 7m, chiều rộng là 5m
b) Tính detal = b^2 - 4ac = 4(m-1)^2 - 4(m-3)
detal = 4(m^2-2m+1) - 4m +12
= 4m^2 -12m +16
= 4(m^2-3m+4)
=4(m^2 -2.m.3/2 + 9/4 + 7/4)
=4(m-3/2)^2 + 7 >0 với mọi m
Do đó luôn có 2 nghiệm
Gọi số hồ sơ đăng kí trực tuyến, trực tiếp lần lượt là a ; b ( a ; b > 0 )
Theo bài ra ta có hpt \(\left\{{}\begin{matrix}a+b=650\\a-b=120\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=385\\b=265\end{matrix}\right.\left(tm\right)\)
Gọi x, y (hồ sơ) lần lượt là số hồ sơ đăng ký trực tuyến và đăng ký trực tiếp tại nhà trường (x,y \(\in\) N*)
Vì một trường THPT nhận được 650 hồ sơ đăng ký thi tuyển sinh vào lớp 10 với cả hai hình thức nên:
\(x+y=650\left(1\right)\)
Vì số hồ sơ đăng ký trực tuyến nhiều hơn số hồ sơ đăng ký trục tiếp là 120 hồ sơ nên:
\(x-y=120\left(2\right)\)
Từ (1) và (2) ta có hpt: \(\left\{{}\begin{matrix}x+y=650\\x-y=120\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=385\\y=265\end{matrix}\right.\)( hồ sơ)
Vậy .........