2 tìm giá trị lớn nhất
a, l x-5l - lx-7l
b, l 3x-5l - l 7-3x l
d, l 1-x l - l 2-x l
các bn giải chính xác giúp mình vs ạ( mình cảm ơn nhiều)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=104-100+96-92+88-84+...-12+8
=(104-100)+(96-92)+...+(16-12)+8
=4+4+...+4+8
\(=4\cdot12+8=48+8=56\)
a: ĐKXĐ: x>=1/2
\(\sqrt{2x-1}=5\)
=>\(2x-1=5^2=25\)
=>2x=26
=>x=13(nhận)
b: ĐKXĐ: \(x>=-\dfrac{2}{3}\)
\(\sqrt{3x+2}=\dfrac{1}{4}\)
=>\(3x+2=\left(\dfrac{1}{4}\right)^2=\dfrac{1}{16}\)
=>\(3x=\dfrac{1}{16}-2=\dfrac{1}{16}-\dfrac{32}{16}=-\dfrac{31}{16}\)
=>\(x=-\dfrac{31}{48}\left(nhận\right)\)
c: \(\sqrt{x^2+\dfrac{1}{4}}=\sqrt{\dfrac{49}{81}}\)
=>\(x^2+\dfrac{1}{4}=\dfrac{49}{81}\)
=>\(x^2=\dfrac{49}{81}-\dfrac{1}{4}=\dfrac{115}{324}\)
=>\(x=\pm\dfrac{\sqrt{115}}{18}\)
\(1\dfrac{1}{5}:\left\{\dfrac{5}{8}+\left[\dfrac{5}{3}-\left(-\dfrac{1}{4}\right)\right]\cdot\dfrac{9}{2^2}\right\}\)
\(=\dfrac{6}{5}:\left\{\dfrac{5}{8}+\left(\dfrac{5}{3}+\dfrac{1}{4}\right)\cdot\dfrac{9}{4}\right\}\)
\(=\dfrac{6}{5}:\left\{\dfrac{5}{8}+\dfrac{23}{12}\cdot\dfrac{9}{4}\right\}\)
\(=\dfrac{6}{5}:\left\{\dfrac{5}{8}+\dfrac{23\cdot3}{16}\right\}=\dfrac{6}{5}:\left(\dfrac{10}{16}+\dfrac{69}{16}\right)\)
\(=\dfrac{6}{5}\cdot\dfrac{16}{79}=\dfrac{96}{395}\)
Thể tích nước trong thùng ban đầu là:
\(V_1=x\cdot a\cdot b\left(dm^3\right)\)
Diện tích đáy trong thùng sau khi nghiêng là:
\(S_{đáy}=\dfrac{1}{2}\cdot\dfrac{3}{4}a\cdot8=3a\left(dm^2\right)\)
Thể tích nước sau khi nghiêng thùng là: \(V_2=3a\cdot b\left(dm^3\right)\)
Vì thể tích nước trước và sau khi nghiêng thùng đều không thay đổi nên \(x\cdot a\cdot b=3\cdot a\cdot b\)
=>x=3
Ta có; ΔABC=ΔDEF
=>AB=DE; BC=EF; AC=DF; \(\widehat{BAC}=\widehat{EDF};\widehat{ABC}=\widehat{DEF};\widehat{ACB}=\widehat{DFE}\)
Xét ΔBAM và ΔEDN có
AB=DE
\(\widehat{ABM}=\widehat{DEN}\)
BM=EN
Do đó: ΔBAM=ΔEDN
=>AM=DN và \(\widehat{BAM}=\widehat{EDN}\)
a: \(\widehat{MON}+\widehat{O_1}+45^0=180^0\)
=>\(\widehat{O_1}=180^0-90^0-45^0=45^0\)
Ta có: \(\widehat{O_1}=\widehat{MNO}\left(=45^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên OB//AM
b: Ta có: OB//AM
MA\(\perp\)AB
Do đó: OB\(\perp\)BA
\(A=\dfrac{1}{299}\left(1-\dfrac{1}{300}+\dfrac{1}{2}-\dfrac{1}{301}+\dfrac{1}{3}-\dfrac{1}{302}+...+\dfrac{1}{101}-\dfrac{1}{400}\right)\)
\(299A=1+\dfrac{1}{2}+...+\dfrac{1}{101}-\left(\dfrac{1}{300}+\dfrac{1}{301}+...+\dfrac{1}{400}\right)\)
Thêm bớt \(\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{299}\) ta được:
\(299A=1+\dfrac{1}{2}+...+\dfrac{1}{101}+\left(\dfrac{1}{102}+...+\dfrac{1}{299}\right)-\left(\dfrac{1}{102}+...+\dfrac{1}{299}\right)-\left(\dfrac{1}{300}+...+\dfrac{1}{400}\right)\)
\(299A=\left(1+\dfrac{1}{2}+...+\dfrac{1}{299}\right)-\left(\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{400}\right)\)
\(101B=1-\dfrac{1}{102}+\dfrac{1}{2}-\dfrac{1}{103}+\dfrac{1}{3}-\dfrac{1}{104}+....+\dfrac{1}{299}-\dfrac{1}{400}\)
\(101B=\left(1+\dfrac{1}{2}+...+\dfrac{1}{299}\right)-\left(\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{400}\right)\)
\(\Rightarrow299A=101B\)
\(\Rightarrow\dfrac{A}{B}=\dfrac{101}{299}\)
a) \(\left|x-5\right|-\left|x-7\right|\le\left|x-5-x+7\right|=2\)
Dấu "=" xảy ra:
`(x-5)(x-7)<=0<=>5<=x<=7`
b) \(\left|3x-5\right|-\left|7-3x\right|=\left|3x-5\right|-\left|3x-7\right|\le\left|3x-5-3x+7\right|=2\)
Dấu "=" xảy ra:
`(3x-5)(3x-7)<=0<=>5/3<=x<=7/3`
c) \(\left|1-x\right|-\left|2-x\right|\le\left|1-x-2+x\right|=1\)
Dấu "=" xảy ra:
`(1-x)(2-x)<=0<=>(x-1)(x-2)<=0<=>1<=x<=2`