(x+y)2 -2(x+y)(x-y)+(x-y)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{1}{x^2+4x+9}\)
\(A=\frac{1}{x^2+4x+4+5}\)
\(A=\frac{1}{\left(x+2\right)^2+5}\le\frac{1}{5}\)
=> GTLN của \(A=\frac{1}{5}\)
\(\Leftrightarrow\left(x+2\right)^2=0\)
\(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
Vậy ..............
Có:
\(ab+cd=ab.1+cd.1\)
\(=ab\left(c^2+d^2\right)+cd\left(a^2+b^2\right)\)
\(=abc^2+abd^2+cda^2+cdb^2\)
\(=bc\left(ac+bd\right)+ad\left(bd+ac\right)\)
\(=\left(ac+bd\right)\left(bc+ad\right)=0.\left(bc+ad\right)=0\)
Ta có: \(5^{12}+5^6=5^{2\cdot6}+5^{2\cdot3}=25^6+25^3\equiv\left(-1\right)^6+\left(-1\right)^3\)mod 26
\(\equiv1+\left(-1\right)\equiv0\)mod 26 => \(⋮26\)
Mà đã chia hết cho 25, (25,26) = 1 -> chia hết cho 25*26 = 650
B = 56 ( 52 + 1 )
ma ̀chia het cho 5 ( 650 )
=> 56(52 + 1) chia het cho 5 (650 )
Vay B = 512 + 56 chia het cho 650 ( dpcm )
Bài 1
a) M đối xứng với D qua AB nên MB=BD và AB vuông góc với MD. Ta thấy Am vừa là đường trung tuyến vừa là đường trung trực nên tam giác AMD cân ở A nên AM=AD
Tương tự ta chứng minh được tam giác AEM cân ở A nên AM=AE
=>AE=AD=AM
b)Gọi I là điểm giao của AB và MD, K là giao của AC và ME
tam giác AMD cân có AB là đường trung trực nên cũng là đường phân giác của góc MAD nên góc DAB=gócBAM
tam giác MAE cũng vậy nên góc MAC=gócEAC
vậy góc DAE=góc DAB+ góc BAM + góc MAC +góc CAE= 2(góc BAM+ goc MAC)=2.70=140 độ
bài 2
a) Tương tự phần a câu 1, vì H đối xứng với M qua BC lên tam giác BHM là tam giác cân ở B nên BH=BM
và tương tự tam giác CHM cân ở C nên CM=CH
2 tam giác BHC và BMC có cạnh chung BC và 2 cạnh tương ứng bằng nhau(BH=BM,CH=CM) nên là tam giác bằng nhau
b)H là trực tâm lên HA=HC nên góc HAC=góc HCA, tương tự HA=HB nên góc HAB=góc HBA=> góc HCA+góc HBA= góc HAC+ góc HAB=60
xét tam giác ABC
góc BAC+ (góc HCA+góc HCB)+(góc HBA+góc HBC)=180 =>góc HCB+ góc HBC= 60=> góc BHC=180-60=120
tam giác BHC bằng tam giác BMC nên góc BMC=góc BHC= 120
(x+y)3-3xy(x+y)+z3-3xyz
=[(x+y)3+z3 ]-3xy(x+y+z)
=(x+y+z)[(x+y)2+z(x+y)+z2 ]-3xy(x+y+z)
=(x+y+z)[x2+y2+z2-2xy-2xz-2yz)
\(\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\)
\(=\left(x+y-x+y\right)^2\)
\(=\left(2y\right)^2=4y^2\)
\(\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\)
\(=\left(x+y-x+y\right)^2=\left(2y\right)^2=4y^2\)