Tìm x , y biết 2+x^2+y^3÷4=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi t/gian oto đi từ A-B là x+2/3 (x>0)
=> t/gian về của oto từ B->A là x
vận tốc oto đi từ A-B là 70km/h
vận tốc ôt ô đi từ B->A là 50km/h
theo đề bài: ta có ptr:
70*(x+2/3)=50x
=> 70x + 140/3 = 50x
=> 70x-50x=140/3
=> 20x=140/3
=> x= 7/3 giờ => Quãng đường AB là: 50*7/3=116.6666(km)
bn cho mình gửi sắp đến thi học kì 2 rồi. đây là những món quà mà bn sẽ nhận đc:
1: áo quần
2: tiền
3: đc nhiều người yêu quý
4: may mắn cả
5: luôn vui vẻ trong cuộc sống
6: đc crush thích thầm
7: học giỏi
8: trở nên xinh đẹp
phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người, sau 3 ngày bn sẽ có những đc điều đó. nếu bn ko gửi tin nhắn này cho 25 người thì bn sẽ luôn gặp xui xẻo, học kì 2 bn sẽ là học sinh yếu và bạn bè xa lánh( lời nguyền sẽ bắt đầu từ khi đọc) ( mình
cũng bị ép);-;
Lời giải:
Gọi chiều rộng miếng đất là $a$ (m) thì chiều dài miếng đất là $a+5$ m.
Khi giảm chiều rộng 3m và tăng chiều dài 4m thì diện tích là:
$(a-3)(a+5+4)=(a-3)(a+9)$ (m2)
Diện tích ban đầu: $a(a+5)$ (m2)
Theo bài ra ta có: $(a-3)(a+9)=a(a+5)+13$
$\Leftrightarrow 6a-27=5a+13$
$\Leftrightarrow a=40$ (m)
Diện tích lúc đầu: $a(a+5)=40.45=1800$ (m2)
Giả sử 3 số tự nhiên đó lần lượt là a, b, c. Theo yêu cầu đề bài, ta có phương trình:
a + b + c = abc
Chia cả 2 vế của phương trình trên cho abc, ta có:
1/a + 1/b + 1/c = 1
Đây là phương trình Diophantus của bài toán. Chúng ta sẽ giải phương trình này bằng phương pháp thủ công như sau:
Ta có thể giả sử a ≤ b ≤ c (do tính chất giao hoán và kết hợp của phép nhân)
Trường hợp a = 1. Ta có 1/b + 1/c = 1, kết hợp với a ≤ b ≤ c, ta có b ≥ 2, c ≥ 3. Thử từng trường hợp b = 2, 3, ... ta sẽ tìm ra được 1 nghiệm là (1, 2, 3)
Trường hợp a = 2. Ta có 1/b + 1/c = 1/2. Kết hợp với a ≤ b ≤ c, ta có b ≥ 3, c ≥ 5. Thử từng trường hợp b = 3, 4, ... và kiểm tra nghiệm c tương ứng, ta không tìm được nghiệm nào.
Trường hợp a = 3. Ta có 1/b + 1/c = 2/9. Tương tự, ta có b ≥ 4, c ≥ 13. Thử từng trường hợp b = 4, 5, ... và kiểm tra nghiệm c tương ứng, ta không tìm được nghiệm nào.
Vậy nghiệm duy nhất của phương trình ban đầu là (1, 2, 3).