Làm giúp mik vài bài nhé mik cảm ơn nhiều .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
khai triển đa thức ta đc:
=x2-4x+4+x2+4x+4+x3+9x2+27x+27+27x3+27x2+9x+1
=28x3+36x2+36x+36
Vậy hệ số của x2 sau khi khai triển là 36
Xét tứ giác HMIK có \(\widehat{H}+\widehat{M}+\widehat{I}+\widehat{K}=360^0\)
=>\(3x+4x+2x+x=360\)
=>\(10x=360^0\)
=>\(x=36^0\)
=>\(\widehat{H}=3\cdot36^0=108^0;\widehat{M}=4\cdot36^0=144^0;\widehat{I}=2\cdot36^0=72^0;\widehat{K}=36^0\)
Vì \(\widehat{H}+\widehat{I}=180^0\)
nên HM//IK
=>HMIK là hình thang
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC=\sqrt{5^2+12^2}=13\left(cm\right)\)
Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
=>\(\dfrac{BD}{5}=\dfrac{CD}{12}\)
mà BD+CD=BC=13cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{5}=\dfrac{CD}{12}=\dfrac{BD+CD}{5+12}=\dfrac{13}{17}\)
=>\(BD=\dfrac{13}{17}\cdot5=\dfrac{65}{17}\left(cm\right);CD=\dfrac{13}{17}\cdot12=\dfrac{156}{17}\left(cm\right)\)
b: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
\(\widehat{DCE}\) chung
Do đó: ΔCDE~ΔCAB
=>\(k=\dfrac{CD}{CA}=\dfrac{156}{17}:12=\dfrac{13}{17}\)
c: ΔCDE~ΔCAB
=>\(\dfrac{CD}{CA}=\dfrac{CE}{CB}\)
=>\(\dfrac{CD}{CE}=\dfrac{CA}{CB}\)
Xét ΔCDA và ΔCEB có
\(\dfrac{CD}{CE}=\dfrac{CA}{CB}\)
\(\widehat{C}\) chung
Do đó: ΔCDA~ΔCEB
=>\(\dfrac{DA}{EB}=\dfrac{CA}{CB}\)
=>\(DA\cdot CB=BE\cdot AC\)
d: ΔCDE~ΔCAB
=>\(\dfrac{DE}{AB}=\dfrac{CD}{CA}\)
=>\(\dfrac{DE}{5}=\dfrac{156}{17}:12=\dfrac{13}{17}\)
=>\(DE=\dfrac{13}{17}\cdot5=\dfrac{65}{17}\left(cm\right)\)
Xét tứ giác ABDE có \(\widehat{EAB}+\widehat{EDB}=90^0+90^0=180^0\)
nên ABDE là tứ giác nội tiếp
=>\(\widehat{DEB}=\widehat{DAB}=45^0\)
Xét ΔDEB vuông tại D có \(\widehat{DEB}=45^0\)
nên ΔDEB vuông cân tại D
ΔBDE vuông cân tại D
=>\(S_{BDE}=\dfrac{1}{2}\cdot DB\cdot DE=\dfrac{1}{2}\cdot DB^2=\dfrac{1}{2}\cdot\left(\dfrac{65}{17}\right)^2=\dfrac{1}{2}\cdot\dfrac{4225}{289}=\dfrac{4225}{578}\left(cm^2\right)\)
a: ĐKXĐ: \(x\ne2\)
\(P=\dfrac{1}{x-2}-\dfrac{x^2+8}{x^3-8}-\dfrac{4}{x^2+2x+4}\)
\(=\dfrac{1}{x-2}-\dfrac{x^2+8}{\left(x-2\right)\left(x^2+2x+4\right)}-\dfrac{4}{x^2+2x+4}\)
\(=\dfrac{x^2+2x+4-x^2-8-4\left(x-2\right)}{\left(x-2\right)\left(x^2+2x+4\right)}\)
\(=\dfrac{2x-4-4x+8}{\left(x-2\right)\cdot\left(x^2+2x+4\right)}=\dfrac{-2x+4}{\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{-2}{x^2+2x+4}\)
b:Sửa đề: Tìm giá trị lớn nhất của -2P
Đặt A=-2P
\(=-2\cdot\dfrac{-2}{x^2+2x+4}=\dfrac{4}{\left(x+1\right)^2+3}< =\dfrac{4}{3}\forall x\)
Dấu '=' xảy ra khi x+1=0
=>x=-1(nhận)
Đề của bạn cho là phương trình, không phải đa thức. Bạn xem lại nhé.
\(2x^2-6x+1=0\)
\(\Leftrightarrow4x^2-12x+2=0\)
\(\Leftrightarrow\left(2x\right)^2-2.2x.3+9=7\)
\(\Leftrightarrow\left(2x-3\right)^2=7\)
\(\Leftrightarrow2x-3=\pm\sqrt{7}\)
\(\Leftrightarrow2x=\pm\sqrt{7}+3\)
\(\Leftrightarrow x=\dfrac{\pm\sqrt{7}+3}{2}\)
Vậy ...
`2x^2 - 6x + 1 = 0`
`Δ' = \(\left(\dfrac{b}{2}\right)^2-ac\) = 3^2 - 2.1 = 7 > 0`
=> Phương trình có 2 nghiệm phân biệt
\(\left[{}\begin{matrix}x=\dfrac{-\dfrac{b}{2}+\sqrt{\Delta}}{2}=\dfrac{3+\sqrt{7}}{2}\\x=\dfrac{-\dfrac{b}{2}-\sqrt{\Delta}}{2}=\dfrac{3-\sqrt{7}}{2}\end{matrix}\right.\)
Vậy ....
Ta có:
\(G=x^2+y^2+2x-4y+9\\ =\left(x^2+2x+1\right)+\left(y^2-4y+4\right)+4\\ =\left(x+1\right)^2+\left(y-2\right)^2+4\ge4>0\forall x,y\\ H=2x^2+y^2+2xy+2x-4y+19\\ =\left(x^2+y^2+4-4x-4y+2xy\right)+\left(x^2+6x+9\right)+6\\ =\left(x+y-2\right)^2+\left(x+3\right)^2+6\ge6>0\forall x,y\)
Bài 1;
a: ABCD là hình thang cân
=>\(\widehat{D}=\widehat{C}=60^0\)
ABCD là hình thang
=>\(\widehat{BAD}+\widehat{ADC}=180^0\)
=>\(\widehat{BAD}=120^0\)
ABCD là hình thang cân
=>\(\widehat{BAD}=\widehat{ABC}\)
=>\(\widehat{ABC}=120^0\)
b: Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
\(\widehat{ADE}=\widehat{BCF}\)
Do đó: ΔAED=ΔBFC
=>AE=BF
Bài 4:
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{BAH}\) chung
Do đó: ΔAHB=ΔAKC
b: ΔAHB=ΔAKC
=>BH=CK
Xét ΔKBC vuông tại K và ΔHCB vuông tại H có
BC chung
KC=HB
Do đó: ΔKBC=ΔHCB
c: ΔAHB=ΔAKC
=>AH=AK
Xét ΔABC có \(\dfrac{AH}{AC}=\dfrac{AK}{AB}\)
nên KH//BC
Xét tứ giác BKHC có KH//BC và BH=KC
nên BKHC là hình thang cân