. Cho tam giác ABC (AB <AC) nội tiếp đường tròn (O) có BC là đường kính, vẽ
đường cao AH của tam giác ABC.H thuộc BC
b) Tiếp tuyến tại A của đường tròn (O) cắt các tiếp tuyến tại B và C lần lượt tại M và
N. Chứng minh: MN = MB + NC và
0 MON 90 .
c) Trên cạnh AC lấy điểm E sao cho AB = AE. Gọi I là trung điểm của BE. Chứng
minh 3 điểm M, I, O thẳng hàng.
d) Chứng minh: HI là tia phân giác của góc AHC
Làm mk câu cd thui nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Từ \(f\left(1\right)\le f\left(2\right)\)
\(\Rightarrow a+b\le2a+b\)
\(\Rightarrow a\ge0\)(1)
Từ \(f\left(5\right)\ge f\left(6\right)\)
\(\Rightarrow5a+b\ge6a+b\)
\(\Rightarrow a\le0\)(2)
Từ (1) và (2) => a = 0
Khi đó \(f\left(x\right)=0.a+b=b\)
Vì \(f\left(999\right)=1000\)
\(\Rightarrow b=1000\)
Khi đó \(f\left(2018\right)=b=1000\)
Vậy f(2018) = 1000
Đặt \(x^3=a\)
Pt đã cho trở thành \(a^2+61a-8000=0\)
\(\Leftrightarrow\left(a-64\right)\left(a+125\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=64\\a=125\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^3=64\\x^3=-125\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-5\end{cases}}}\)
\(B=3-2x+\sqrt{1+4x+4x^2}=3-2x+\sqrt{\left(2x+1\right)^2}=3-2x+\left|2x+1\right|\)
Nếu \(x\ge-\frac{1}{2}\Rightarrow B=3-2x+2x+1=4\)
Nếu \(x< -\frac{1}{2}\Rightarrow B=3-2x-2x-1=4-4x\)
b, x = 2015 tức là \(x>-\frac{1}{2}\)
Vậy với x = 2015 thì B = 4