K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2018

ĐKXĐ: \(x\ne-3\)

\(x^2-6x+2=\sqrt{x+3}\)

\(\Leftrightarrow x^2-x-5x-3-1=\sqrt{x+3}\)

Đặt \(\sqrt{x+3}=t\).

Phương trình đã cho tương đương với: \(x^2-5x-1-t=t\)

\(\Leftrightarrow x^2-5x-1=0\).Đặt \(\Delta=b^2-4ac=\left(-5\right)^2-4.1.\left(-1\right)=29\)

Do \(\Delta>0\),phương trình có hai nghiệm phân biệt: \(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{5+\sqrt{29}}{2}\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{5-\sqrt{29}}{2}\end{cases}}\) (không chắc nha)