cho các số x,y,z đôi một khác nhau thỏa mãn : x^3(y-z)+z^3(x-y)=y^3(z-x) . cmr x^3+ y^3+z^3=3xyz
giúp mình với , mình đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho bạn kết quả phân tích thôi, tự phân tích nha:D
a) \(\Leftrightarrow2\left(x+4\right)\left(x+10\right)\left(x^2+14x+64\right)=0\)
b)\(\Leftrightarrow2\left(x-3\right)\left(x-4\right)\left(x^2-7x+26\right)=0\)
Dạng này thì em : \(\frac{6+8}{2}=7\).
Đặt x + 7 =t
=> Phương trình ban đầu trở thành: \(\left(t+1\right)^4+\left(t-1\right)^4=272\)
<=> \(\left(t^4+4t^3+6t^2+4t+1\right)+\left(t^4-4t^3+6t^2-4t+1\right)=272\)
<=> \(2t^4+12t^2+2=272\)
<=> \(t^4+6t^2-135=0\)
<=> \(t^4+6t^2+9=144\)
<=> \(\left(t^2+3\right)^2=12^2\)
<=> \(\orbr{\begin{cases}t^2+3=12\\t^2+3=-12\end{cases}}\Leftrightarrow\orbr{\begin{cases}t^2=9\left(tm\right)\\t^2=-15\left(l\right)\end{cases}}\Leftrightarrow t=\pm3\)
Với t = 3 có: x + 7 = 3 <=> x =-4
Với t = -3 có: x +7 =-3 <=> x = -10
b) pt \(\left(5-x\right)^4+\left(2-x\right)^4=17\)<=> \(\left(x-5\right)^4+\left(x-2\right)^4=17\)
Tương tự: \(\frac{5+2}{2}=\frac{7}{2}\)
Đặt: \(x-\frac{7}{2}=t\)
pt trở thành: \(\left(t-\frac{3}{2}\right)^4+\left(t+\frac{3}{2}\right)^4=17\)
<=> ....
Làm thử tiếp nha.
Chú ý công thức : \(\left(a\pm b\right)^4=a^4\pm4a^3b+6a^2b^2\pm4ab^3+b^4\)
\(A=-x^2+4xy-5y^2+6y-17\)
\(=-\left(x^2-4xy+4y^2\right)-\left(y^2-6y+9\right)-8\)
\(=-\left(x-2y\right)^2-\left(y-3\right)^2-8\)
Vì \(\hept{\begin{cases}-\left(x-2y\right)^2\le0;\forall x,y\\-\left(y-3\right)^2\le0;\forall x,y\end{cases}}\)
\(\Rightarrow-\left(x-2y\right)^2-\left(y-3\right)^2\le0;\forall x,y\)
\(\Rightarrow-\left(x-2y\right)^2-\left(y-3\right)^2-8\le0-8;\forall x,y\)
Hay \(A\le-8;\forall x,y\)
Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-2y\right)^2=0\\\left(y-3\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)
Vậy MAX \(A=-8\)\(\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)
*Hình hơi xấu và không chuẩn :v nếu viết lại thì cậu đo số đo cẩn thận nha,thêm cả kí hiệu nữa*
Vì x'Oy' và xOy là hai góc đối đỉnh.
Nên khi đó, x'Oy'=xOy=148o
=> x'Oy'=148o
\(x^3-5x^2+8x-4\)
\(=x^3-4x^2+4x-x^2+4x-4\)
\(=x\cdot\left(x^2-4x+4\right)-\left(x^2-4x+4\right)\)
\(=\left(x-2\right)^2\cdot\left(x-1\right)\)
\(x^3-5x^2+8x-4\)
\(=\left(x^3-4x^2+4x\right)-\left(x^2-4x+4\right)\)
\(=x\left(x^2-4x+4\right)-\left(x^2-4x+4\right)\)
\(=\left(x-1\right)\left(x^2-4x+4\right)\)
\(=\left(x-1\right)\left(x-2\right)^2\)