K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2019

trả lời : Nụ cười

nụ cười

7 tháng 1 2019

giờ nhân cả tử và mẫu mỗi phân thức vs mỗi tử của nó rồi sử dụng BDT bunhiacopxki là ra thôi bn

8 tháng 1 2019

\(\frac{x^2}{x^3-xyz+2013x}+\frac{y^2}{y^3-xyz+2013y}+\frac{z^2}{z^3-xyz+2013z}\)

\(\ge\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+3.\left(xy+yz+zx\right)\left(x+y+z\right)}\)

\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx+3xy+3yz+3zx\right)}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left(x+y+z\right)^2}=\frac{1}{x+y+z}\)

7 tháng 1 2019

mk nghĩ là nếu đố mẹo thif vẫn sẽ có 1 con tại vì đề bài có nói là bay đến cành cây đó đâu

ko đố mẹo thì có 101 con

7 tháng 1 2019

Ta có BĐT: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) (bạn tự c/m,không làm được thì bảo mình :v)

Ta có: \(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+2b}\) (1)

Mặt khác: Theo BĐT Bunhiacopxki:

\(\left(1a+2b\right)^2\le\left(1^2+\sqrt{2}^2\right)\left(a^2+\sqrt{2}^2b^2\right)=3.3c^2=9c^2\)

Suy ra \(a+2b\le3c\)

Mặt khác,theo đề bài \(a^2+2b^2=3c^2\Rightarrow a+2b=3c\)

Thay vào (1) suy ra \(VT\ge\frac{9}{a+2b}=\frac{9}{3c}=\frac{3}{c}^{\left(đpcm\right)}\)

9 tháng 1 2019

Dấu "=" xảy ra khi a = b = c

7 tháng 1 2019

1+1+1+1=4

7 tháng 1 2019

Trả lời:

1+1+1+1=4

tk mk nha

love

7 tháng 1 2019

Ta có \(a+\sqrt{ab}+\sqrt[3]{abc}=\frac{4}{3}\left(a,b,c>0\right)\)

\(\Leftrightarrow4a+4\sqrt{ab}+4\sqrt[3]{abc}=\frac{16}{3}.\)

\(\Leftrightarrow4a+2.2\sqrt{ab}+\sqrt[3]{64abc}=\frac{16}{3}.\)

\(\Leftrightarrow4a+2\sqrt{a.4b}+\sqrt[3]{a.4b.16c}=\frac{16}{3}.\)(1)

Áp dụng BDT Cauchy cho hai số dương \(a\)và \(4b\)ta được:\(2\sqrt{a.4b}\le a+4b\)(dấu bằng có \(\Leftrightarrow a=4b\))(2)

Áp dụng BDT Cauchy cho ba số dương \(a;4b\)và \(16c\)ta được:\(\sqrt[3]{a.4b.16c}\le\frac{1}{3}\left(a+4b+16c\right).\)(dấu bằng có \(\Leftrightarrow a=4b=16c\))(3)

Từ (1);(2) và (3) suy ra:

 \(\frac{16}{3}\le4a+a+4b+\frac{1}{3}\left(a+4b+16c\right).\)

\(\Leftrightarrow\frac{16}{3}\le5a+4b+\frac{1}{3}a+\frac{4}{3}b+\frac{16}{3}c.\)

\(\Leftrightarrow\frac{16}{3}\le\frac{16}{3}a+\frac{16}{3}b+\frac{16}{3}c.\)

\(\Leftrightarrow\frac{16}{3}\left(a+b+c\right)\ge\frac{16}{3}.\)

\(\Leftrightarrow a+b+c\ge1\)

\(\Rightarrow MinZ=1\)

\(\Leftrightarrow\hept{\begin{cases}a+\sqrt{ab}+\sqrt[3]{abc}=\frac{4}{3}.\\a+b+c=1\\a=4b=16c\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=\frac{16}{21}\\b=\frac{4}{21}\\c=\frac{1}{21}\end{cases}}\)

Vậy GTNN của \(Z\)là 1 khi và chỉ khi \(a=\frac{16}{21};b=\frac{4}{21};c=\frac{1}{21}.\)

P/S:Trong quá trình làm dù đã rất cố gắng song khó tránh khỏi sai sót;mong bạn lượng thứ.

7 tháng 1 2019

Đình chính:

\(MinZ=1\Leftrightarrow\hept{\begin{cases}a+\sqrt{ab}+\sqrt[3]{abc}=\frac{4}{3}\\a=4b=16c\\a+b+c=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=\frac{16}{21}\\b=\frac{4}{21}\\c=\frac{1}{21}\end{cases}}}\)

7 tháng 1 2019

 Kí hiệu S(n)S(n) là tổng các chữ số của nn. Ta có S(n)≡nS(n)≡n (mod 9).

Do đó sau khi thay nn bằng S(n)S(n) thì số dư khi chia cho 9 là không đổi.

⇒⇒ Kết quả cuối cùng là các số có 1 chữ số là số dư của số ban đầu khi chia 9.

Mà số đầu và số cuối của dãy chia 9 dư 1 nên số dư 1 là nhiều nhất.

Tức là chữ số 1 xuất hiện nhiều nhất.