Nụ không bao giờ nở thành hoa?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giờ nhân cả tử và mẫu mỗi phân thức vs mỗi tử của nó rồi sử dụng BDT bunhiacopxki là ra thôi bn
\(\frac{x^2}{x^3-xyz+2013x}+\frac{y^2}{y^3-xyz+2013y}+\frac{z^2}{z^3-xyz+2013z}\)
\(\ge\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+3.\left(xy+yz+zx\right)\left(x+y+z\right)}\)
\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx+3xy+3yz+3zx\right)}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left(x+y+z\right)^2}=\frac{1}{x+y+z}\)
mk nghĩ là nếu đố mẹo thif vẫn sẽ có 1 con tại vì đề bài có nói là bay đến cành cây đó đâu
ko đố mẹo thì có 101 con
Ta có BĐT: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) (bạn tự c/m,không làm được thì bảo mình :v)
Ta có: \(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+2b}\) (1)
Mặt khác: Theo BĐT Bunhiacopxki:
\(\left(1a+2b\right)^2\le\left(1^2+\sqrt{2}^2\right)\left(a^2+\sqrt{2}^2b^2\right)=3.3c^2=9c^2\)
Suy ra \(a+2b\le3c\)
Mặt khác,theo đề bài \(a^2+2b^2=3c^2\Rightarrow a+2b=3c\)
Thay vào (1) suy ra \(VT\ge\frac{9}{a+2b}=\frac{9}{3c}=\frac{3}{c}^{\left(đpcm\right)}\)
Ta có \(a+\sqrt{ab}+\sqrt[3]{abc}=\frac{4}{3}\left(a,b,c>0\right)\)
\(\Leftrightarrow4a+4\sqrt{ab}+4\sqrt[3]{abc}=\frac{16}{3}.\)
\(\Leftrightarrow4a+2.2\sqrt{ab}+\sqrt[3]{64abc}=\frac{16}{3}.\)
\(\Leftrightarrow4a+2\sqrt{a.4b}+\sqrt[3]{a.4b.16c}=\frac{16}{3}.\)(1)
Áp dụng BDT Cauchy cho hai số dương \(a\)và \(4b\)ta được:\(2\sqrt{a.4b}\le a+4b\)(dấu bằng có \(\Leftrightarrow a=4b\))(2)
Áp dụng BDT Cauchy cho ba số dương \(a;4b\)và \(16c\)ta được:\(\sqrt[3]{a.4b.16c}\le\frac{1}{3}\left(a+4b+16c\right).\)(dấu bằng có \(\Leftrightarrow a=4b=16c\))(3)
Từ (1);(2) và (3) suy ra:
\(\frac{16}{3}\le4a+a+4b+\frac{1}{3}\left(a+4b+16c\right).\)
\(\Leftrightarrow\frac{16}{3}\le5a+4b+\frac{1}{3}a+\frac{4}{3}b+\frac{16}{3}c.\)
\(\Leftrightarrow\frac{16}{3}\le\frac{16}{3}a+\frac{16}{3}b+\frac{16}{3}c.\)
\(\Leftrightarrow\frac{16}{3}\left(a+b+c\right)\ge\frac{16}{3}.\)
\(\Leftrightarrow a+b+c\ge1\)
\(\Rightarrow MinZ=1\)
\(\Leftrightarrow\hept{\begin{cases}a+\sqrt{ab}+\sqrt[3]{abc}=\frac{4}{3}.\\a+b+c=1\\a=4b=16c\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=\frac{16}{21}\\b=\frac{4}{21}\\c=\frac{1}{21}\end{cases}}\)
Vậy GTNN của \(Z\)là 1 khi và chỉ khi \(a=\frac{16}{21};b=\frac{4}{21};c=\frac{1}{21}.\)
P/S:Trong quá trình làm dù đã rất cố gắng song khó tránh khỏi sai sót;mong bạn lượng thứ.
Kí hiệu S(n)S(n) là tổng các chữ số của nn. Ta có S(n)≡nS(n)≡n (mod 9).
Do đó sau khi thay nn bằng S(n)S(n) thì số dư khi chia cho 9 là không đổi.
⇒⇒ Kết quả cuối cùng là các số có 1 chữ số là số dư của số ban đầu khi chia 9.
Mà số đầu và số cuối của dãy chia 9 dư 1 nên số dư 1 là nhiều nhất.
Tức là chữ số 1 xuất hiện nhiều nhất.
trả lời : Nụ cười
nụ cười