Chứng minh rằng với mọi x, y thuộc tập hợp Q thì:
a) Ix + yI bé hơn hoặc bằng IxI + IyI
b) Ix - yI lớn hơn hoặc bằng IxI - IyI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 2x+1=8
Mà (2x+1)^2= 4x+1
=) 4x+1= 8^2=64
Vậy 4x+1= 64, mình làm bừa à.
Gọi số cây lớp 7A trồng được là x, số cây lớp 7B trồng được là y ( x, y thuộc N* ; x, y < 102 )
Theo đề bài ta có : \(y=\frac{8}{9}x\Rightarrow\frac{y}{1}=\frac{x}{\frac{9}{8}}\)và x + y = 102
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{y}{1}=\frac{x}{\frac{9}{8}}=\frac{x+y}{\frac{9}{8}+1}=\frac{102}{\frac{17}{8}}=48\)
\(\Rightarrow\hept{\begin{cases}y=48\\x=54\end{cases}}\)( tmđk )
Vậy lớp 7A trồng được 54 cây
lớp 7B trồng được 48 cây
Gọi dãy 80 số nguyên dương chẵn đầu tiên là 2 ; 4 ; 6 ; 8 ; ... x
Theo công thức tính số số hạng ta có :
( x - 2 ) : 2 + 1 = 80
=> ( x - 2 ) : 2 = 79
=> x - 2 = 158
=> x = 160
Tổng của dãy số = \(\frac{\left(160+2\right)\cdot80}{2}=6480\)
Tương tự : Gọi dãy 80 số nguyên dương lẻ đầu tiên là 1 ; 3 ; 5 ; 7 ; ... ; y
Theo công thức trên ta có :
( y - 1 ) : 2 + 1 = 80
=> ( y - 1 ) : 2 = 79
=> y - 1 = 158
=> y = 159
Tổng của dãy số = \(\frac{\left(159+1\right)\cdot80}{2}=6400\)
=> Hiệu của tổng 80 số nguyên dương chẵn đầu tiên với tổng của 80 số nguyên dương lẻ đầu tiên = 6480 - 6400 = 80
Giả sử \(\frac{a}{b}=\frac{c}{d}\)Suy ra điều ta cần chứng minh là \(\frac{a+3c}{b+3d}=\frac{a+c}{b+d}\)
Theo tính chất của dãy tỉ số bằng nhau :
\(\hept{\begin{cases}\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\\\frac{a}{b}=\frac{3c}{3d}=\frac{a+3c}{b+3d}\end{cases}}< =>\frac{a+3c}{b+3d}=\frac{a+c}{b+d}\)
Vậy ta có điều phải chứng minh
a. Ta có :
\(\left|x+y\right|\le\left|x\right|+\left|y\right|\Leftrightarrow\left(\left|x\right|+\left|y\right|\right)^2\ge\left|x+y\right|^2=\left(x+y\right)^2\)
\(\Leftrightarrow x^2+y^2+2\left|xy\right|\ge x^2+2xy+y^2\)
\(\Leftrightarrow2\left|xy\right|\ge2xy\Leftrightarrow\left|xy\right|\ge xy\) ( luôn đúng )
Dấu "=" xảy ra <=> x và y cùng dấu