Viết số hữu tỉ \(\frac{-7}{20}\)thành : a) Tích của 2 số hữu tỉ. b) Thương của 2 số hữu tỉ c) Tổng của 2 số hữu tỉ khác dấu.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(\frac{2x+3}{15}=\frac{7}{5}\)
\(\Leftrightarrow5\left(2x+3\right)=15.7\)
\(\Leftrightarrow10x+15=105\)
\(\Leftrightarrow10x=90\)
\(\Leftrightarrow x=9\)
b. \(\frac{x-2}{9}=\frac{8}{3}\)
\(\Leftrightarrow3\left(x-2\right)=9.8\)
\(\Leftrightarrow3x-6=72\)
\(\Leftrightarrow3x=78\)
\(\Leftrightarrow x=26\)
c. \(\frac{-8}{x}=\frac{-x}{18}\)
\(\Leftrightarrow-x^2=-144\)
\(\Leftrightarrow x^2=12^2\)
\(\Leftrightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)
Mấy câu kia tương tự
d, \(\frac{2x+3}{6}=\frac{x-2}{5}\Leftrightarrow10x+15=6x-12\Leftrightarrow4x=-27\Leftrightarrow x=-\frac{27}{4}\)
e, \(\frac{x+1}{22}=\frac{6}{x}\Leftrightarrow x^2+x=132\Leftrightarrow x^2+x-132=0\Leftrightarrow\left(x-11\right)\left(x+12\right)=0\Leftrightarrow\orbr{\begin{cases}x=11\\x=-12\end{cases}}\)
f, \(\frac{2x-1}{2}=\frac{5}{x}\Leftrightarrow2x^2-x=10\Leftrightarrow2x^2-x-10=0\Leftrightarrow\left(x+2\right)\left(2x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=-2\\x=\frac{5}{2}\end{cases}}\)
g, \(\left(2x-1\right)\left(2x+1\right)=63\Leftrightarrow4x^2+2x-2x-1=63\Leftrightarrow4x^2-64=0\)
\(\Leftrightarrow x^2=16\Leftrightarrow x=\pm4\)
h, \(\frac{10x+5}{6}=\frac{5}{x+1}\Leftrightarrow\left(10x+5\right)\left(x+1\right)=30\Leftrightarrow10x^2+10x+5x+5=30\)
\(\Leftrightarrow10x^2+15x-25=0\Leftrightarrow5\left(2x+5\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{2}\\x=1\end{cases}}\)
a) gọi tam giác đó là tam giác ABC vuông tại A
Tam giác vuông ABC vuông tại A,có AM là trung tuyến
Trên tia đối của MA lấy điểm D sao cho MA=MD
\(\Rightarrow AM=\frac{1}{2}AD\left(1\right)\)
Ta có Tứ giác ABDC là hình bình hành và góc A = 90
=>ABDC là hình chữ nhật
\(\Rightarrow AD=BC\left(2\right)\)
THAY (2) VÀO (1)
\(\Rightarrow AM=\frac{1}{2}BC\)
Vậy trong một tam giác vuông,đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền
b) ngược lại :3
a) Gọi Δ đó là ΔABC, ΔABC vuông tại A, AM là trung tuyến ΔABC
Trên tia đối MA lấy MD sao cho MD = MA
Xét ΔBMA và ΔCMD có:
MB = MC (AM: trung tuyến BC)
BMA = CMD (đối đỉnh)
MA = MD (cách vẽ)
=> ΔBMA = ΔCMD (c.g.c)
=> AB = DC (2 cạnh tương ứng)
ABM = DCM (2 góc tương ứng), mà 2 góc ở vị trí slt
=> AB // CD
Có: AB // CD, AB ⊥ AC => DC ⊥ CA
Xét ΔBAC và ΔDCA có:
BAC = DCA (cùng = 90o)
AB = CD (cmt)
AC: chung
=> ΔBAC = ΔDCA (2cgv)
=> BC = DA (2 cạnh tương ứng)
mà AM = 1/2AD => AM = 1/2BC
=> ĐPCM
b) Gọi Δ đó là ABC, AD là trung tuyến Δ, AD = 1/2BC
Do AD là trung tuyến ΔABC => DB = DC = 1/2C
Mà AD = 1/2BC
=> DB = DC = DA
=> ΔDBA và DAC là 2 Δ cân tại D
=> DBA = DAB, DCA = DAC
Xét ΔABC có: ABC + BCA + BAC = 180o (đ/lí tổng 3 góc Δ)
=> 2(DAB + DAC) = 180o
=> BAC = 90o
=> ΔABC là Δ vuông tại A
=> ĐPCM
P = \(2^{12}\cdot3^5-\left(2^2\right)^6\cdot3^5\cdot3\)
\(=2^{12}\cdot3^5-2^{12}\cdot3^5\cdot3\)
\(=2^{12}\cdot3^5\left(1-3\right)\)
\(=2^{12}\cdot-2\cdot3^5\)
\(=-2^{13}\cdot3^5\)
b)
\(=2^{12}\cdot\left(3^2\right)^3+\left(2^3\right)^4\cdot3^6\)
\(=2^{12}\cdot3^6+2^{12}\cdot3^6\)
\(=2\cdot2^{12}\cdot3^6\)
\(=2^{13}\cdot3^6\)