K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2024

(x + 1)/111 = (y + 2)/222 = (z + 3)/333

⇒ (3x + 3)/333 = (2y + 4)/444 = (z + 3)/333

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

(3x + 3)/333 = (2y + 4)/444 = (z + 3)/333 = (3x + 3 + 2y + 4 + z + 3)/(333 + 444 + 333) = (989 + 10)/1110 = 999/1110 = 9/10

*) (x + 1)/111 = 9/10

⇒ x + 1 = 9/10 .111

⇒ x + 1 = 999/10

⇒ x = 999/10 - 1

⇒ x = 989/10

*) (y + 2)/222 = 9/10

⇒ y + 2 = 9/10 . 222

⇒ y + 2 = 999/5

⇒ y = 999/5 - 2

⇒ y = 989/5

*) (z + 3)/333 = 9/10

⇒ z + 3 = 9/10 . 333

⇒ z + 3 = 2997/10

⇒ z = 2997/10 - 3

⇒ z = 2967/10

Vậy x = 989/10; y = 989/5; z = 2967/10

AH
Akai Haruma
Giáo viên
29 tháng 2 2024

Lời giải:
Áp dụng TCDTSBN:

\(\frac{x+99}{-1}=\frac{y-98}{2}=\frac{z+97}{-3}=\frac{x+99-(y-98)+(z+97)}{-1-2+(-3)}=\frac{x-y+z+294}{-6}\\ =\frac{99+294}{-6}=-65,5\)

$\Rightarrow x=(-65,5)(-1)-99=-33,5$

$y=2(-65,5)+98=-33$

$z=(-3)(-65,5)-97=99,5$

AH
Akai Haruma
Giáo viên
29 tháng 2 2024

Lời giải:

a. $A(x)=(3x^4+x^4)+\frac{1}{3}x^3+(-x^2+2x^2)+(-x)+(5-2)$

$=4x^4+\frac{1}{3}x^3+x^2-x+3$

b. $B(x)=(5x^5-5x^5)+(-x^4+2x^4)+x^3+(-2x^2-3x^2)+4$

$=x^4+x^3-5x^2+4$

c. $C(x)=(-x^5+3x^5)+(2x^4-x^4)+(2x^3)+(-x^2-2x^2)+1$

$=2x^5+x^4+2x^3-3x^2+1$

18 tháng 2 2024

Nếu \(a\) tỉ lệ nghịch với \(\dfrac{1}{b}\) thì 
\(a=\dfrac{k}{\dfrac{1}{b}}\) \(\Rightarrow a=\dfrac{k\cdot b}{1}=kb\)
\(\Rightarrow a\) tỉ lệ thuận với \(b\) mà \(b\) là số nghịch đảo của \(\dfrac{1}{b}\)
Vậy nếu \(a\) tỉ lệ nghịch với \(\dfrac{1}{b}\) thì \(a\) tỉ lệ thuận với số nghịch đảo của \(\dfrac{1}{b}\)

17 tháng 2 2024

933772

AH
Akai Haruma
Giáo viên
18 tháng 2 2024

Bạn cần hỗ trợ bài nào bạn nên ghi chú rõ ra nhé.

16 tháng 2 2024

giúp m với

 

NV
16 tháng 2 2024

\(\dfrac{x+1}{2}=\dfrac{y+3}{4}=\dfrac{z+5}{1}=\dfrac{2x+2}{4}=\dfrac{3y+9}{12}=\dfrac{4z+20}{4}=\dfrac{2x+2+3y+9+4z+20}{4+12+4}\)

\(=\dfrac{2x+3y+4z+31}{20}=\dfrac{9+31}{20}=2\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x+1}{2}=2\\\dfrac{y+3}{4}=2\\z+5=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=5\\z=-3\end{matrix}\right.\)