B=(x-3)3-(x+3).(x2-3x+9)+(3x-1).(3x+1)
C=(3x+2)3-11818x18x .(3x3x+2)+(x-1)3 - 28x3+3x.(x-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để chứng minh rằng √(a-b) và √(3a+3b+1) là các số chính phương, ta sẽ điều chỉnh phương trình ban đầu để tìm mối liên hệ giữa các biểu thức này. Phương trình ban đầu: 2^(2+a) = 3^(2+b) Ta có thể viết lại phương trình theo dạng: (2^2)^((1/2)+a/2) = (3^2)^((1/2)+b/2) Simplifying the exponents, we get: 4^(1/2)*4^(a/2) = 9^(1/2)*9^(b/2) Taking square roots of both sides, we have: √4*√(4^a) = √9*√(9^b) Simplifying further, we obtain: 22*(√(4^a)) = 32*(√(9^b)) Since (√x)^y is equal to x^(y/), we can rewrite the equation as follows: 22*(4^a)/ = 32*(9^b)/ Now let's examine the expressions inside the square roots: √(a-b) can be written as (√((22*(4^a))/ - (32*(9^b))/)) Similarly, √(3*a + 3*b + ) can be written as (√((22*(4^a))/ + (32*(9^b))/)) We can see that both expressions are in the form of a difference and sum of two squares. Therefore, it follows that both √(a-b) and √(3*a + 3*b + ) are perfect squares.
\(p=\left[\left(x+5\right).\left(x+11\right)\right].\left[\left(x+7\right).\left(x+9\right)\right]+16=\)
\(=\left(x^2+16x+55\right)\left(x^2+16x+63\right)+16=\)
\(=\left(x^2+16x\right)^2+118.\left(x^2+16x\right)+3481=\)
\(=\left(x^2+16x\right)^2+2.\left(x^2+16x\right).59+59^2=\)
\(=\left[\left(x^2+16x\right)+59\right]^2\) là một số chính phương
\(Q=\left(a^2b^2+a^2+b^2+1\right)\left(c^2+1\right)=\)
\(=a^2b^2c^2+a^2b^2+a^2c^2+a^2+b^2c^2+b^2+c^2+1=\)
\(=a^2b^2c^2+\left(a^2b^2+b^2c^2+a^2c^2\right)+\left(a^2+b^2+c^2\right)+1\) (1)
Ta có
\(\left(ab+bc+ac\right)^2=a^2b^2+b^2c^2+a^2c^2+2ab^2c+2abc^2+2a^2bc=\)
\(=a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=1\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2=1-2abc\left(a+b+c\right)\) (2)
Ta có
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ac\right)=\)
\(=a^2+b^2+c^2+2\)
\(\Rightarrow a^2+b^2+c^2=\left(a+b+c\right)^2-2\) (3)
Thay (2) và (3) vào (1)
\(Q=a^2b^2c^2+1-2abc\left(a+b+c\right)+\left(a+b+c\right)^2-2+1=\)
\(=\left(abc\right)^2-2abc\left(a+b+c\right)+\left(a+b+c\right)^2=\)
\(=\left[abc-\left(a+b+c\right)\right]^2\)
Cho \(n\) là tổng hai số chính phương. Chứng minh rằng \(n^2\) cũng là tổng của hai số chính phương.
\(n=a^2+b^2\)
\(\Rightarrow n^2=\left(a^2+b^2\right)^2-4a^2b^2+4a^2b^2=\)
\(=\left(a^2+b^2-2ab\right)\left(a^2+b^2+2ab\right)+\left(2ab\right)^2=\)
\(=\left(a-b\right)^2\left(a+b\right)^2+\left(2ab\right)^2=\)
\(=\left[\left(a-b\right)\left(a+b\right)\right]^2+\left(2ab\right)^2=\)
\(=\left(a^2-b^2\right)^2+\left(2ab\right)^2\)
\(A=\left(x^2+x+1\right)^2-4\left(x+2\right)^2+15\)
\(\Rightarrow A=\left(x^2+x+1\right)^2-\left[2\left(x+2\right)\right]^2+15\)
\(\Rightarrow A=\left(x^2+x+1+2x+2\right)\left(x^2+x+1-2x-2\right)+15\)
\(\Rightarrow A=\left(x^2+3x+3\right)\left(x^2-x-1\right)+15\)
\(\Rightarrow A=\left(x^2+3x+\dfrac{9}{4}-\dfrac{9}{4}+3\right)\left(x^2-x+\dfrac{1}{4}-\dfrac{1}{4}-1\right)+15\)
\(\Rightarrow A=\left[\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}\right]\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{5}{4}\right]+15\left(1\right)\)
Ta có : \(\left\{{}\begin{matrix}\left(x+\dfrac{3}{2}\right)^2\ge0,\forall x\\\left(x-\dfrac{1}{2}\right)^2\ge0,\forall x\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4},\forall x\\\left(x-\dfrac{1}{2}\right)^2-\dfrac{5}{4}\ge-\dfrac{5}{4},\forall x\end{matrix}\right.\)
\(\left(1\right)\Rightarrow\left[{}\begin{matrix}A\ge\dfrac{3}{4}.\left[\left(-\dfrac{3}{2}-\dfrac{1}{2}\right)^2-\dfrac{5}{4}\right]+15\left(x=-\dfrac{3}{2}\right)\\A\ge\left[\left(\dfrac{1}{2}+\dfrac{3}{2}\right)^2+\dfrac{3}{4}\right].\left(-\dfrac{5}{4}\right)+15\left(x=\dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}A\ge\dfrac{3}{4}.\left[4-\dfrac{5}{4}\right]+15\left(x=-\dfrac{3}{2}\right)\\A\ge\left[4+\dfrac{3}{4}\right].\left(-\dfrac{5}{4}\right)+15\left(x=\dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}A\ge\dfrac{3}{4}.\dfrac{9}{4}+15\left(x=-\dfrac{3}{2}\right)\\A\ge\dfrac{19}{4}.\left(-\dfrac{5}{4}\right)+15\left(x=\dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}A\ge\dfrac{27}{16}+15\left(x=-\dfrac{3}{2}\right)\\A\ge-\dfrac{95}{16}+15\left(x=\dfrac{1}{2}\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}A\ge\dfrac{267}{16}\left(x=-\dfrac{3}{2}\right)\\A\ge\dfrac{145}{16}\left(x=\dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Rightarrow A\ge\dfrac{145}{16}\left(x=\dfrac{1}{2}\right)\)
\(\Rightarrow GTNN\left(A\right)=\dfrac{145}{16}\left(x=\dfrac{1}{2}\right)\)
`5.25.2.41.8`
`= 5.50.41.8`
`= 5.400.41`
`= 2000.41`
`= 82000`
Đặt \(n^2+4n+2013=p^2\left(p\in Z\right)\)
\(\Rightarrow n^2+4n+4+2009=p^2\)
\(\Rightarrow\left(n+2\right)^2+2009=p^2\)
\(\Rightarrow p^2-\left(n+2\right)^2=2009\)
\(\Rightarrow\left(p+n+2\right)\left(p-n-2\right)=2009\)
mà \(p+n+2>p-n-2\left(n\in N\right)\) và 2009 là số nguyên tố
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}p+n+2=2009\\p-n-2=1\end{matrix}\right.\\\left\{{}\begin{matrix}p+n+2=-2009\\p-n-2=-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}n=1002\\p=1005\end{matrix}\right.\)
Vậy \(n=1002\) thỏa đề bài
A là số chính phương nên: \(A=n^2+n+6=k^2\)
\(\Rightarrow4n^2+4n+24=4k^2\)
\(\Rightarrow4n^2+4n+1+23=4k^2\)
\(\Rightarrow\left(2n+1\right)^2+23=4k^2\)
\(\Rightarrow4k^2-\left(2n+1\right)^2=23\)
\(\Rightarrow\left(2k-2n-1\right)\left(2k+2n+1\right)=23\)
Do \(k,n\in N\) nên: \(2k+2n+1>2k-2n-1\)
Ta có hệ:
\(\left\{{}\begin{matrix}2k+2n+1=23\\2k+2n+1=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2k+2n+1=23\\4k=24\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}12+2n+1=23\\k=6\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2n+13=23\\k=6\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2n=10\\k=6\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}n=5\\k=6\end{matrix}\right.\)
Vậy: n=5
4S=1.2.3.4+2.3.4.4+3.4.5.4+...+k(k+1)(k+2).4=
=1.2.3.4+2.3.4(5-1)+3.4.5.(6-2)+...+k(k+1)(k+2)[(k+3)-(k-1)]=
=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+3.4.5.6-...-(k-1)k(k+1)(k+2)+k(k+1)(k+2)(k+3)=
=k(k+1)(k+2)(k+3)=k(k+3)(k+1)(k+2)=
=(k2+3k)(k2+3k+2)=(k2+3k)2+2(k2+3k)
=> 4S+1=(k2+3k)2+2(k2+3k)+1=[(k2+3k)+1]2
\(n^2+4n+2013=\left(n^2+4n+4\right)+2009=k^2\)
\(\Leftrightarrow\left(n+2\right)^2+2009=k^2\)
\(\Rightarrow\left(k-n-2\right)\left(k+n+2\right)=2009\)
\(\Rightarrow k-n-2\) và \(k+n+2\) là ước của 2009
Ta có các TH
\(\left\{{}\begin{matrix}k-n-2=-1\\k+n+2=-2009\end{matrix}\right.\)
Hoặc
\(\left\{{}\begin{matrix}k-n-2=-2009\\k+n+2=-1\end{matrix}\right.\)
Hoặc
\(\left\{{}\begin{matrix}k-n-2=1\\k+n+2=2009\end{matrix}\right.\)
Hoặc
\(\left\{{}\begin{matrix}k-n-2=2009\\k+n+2=1\end{matrix}\right.\)
Giải các hệ trên tìm n
Yêu cầu đề bài của bạn?
đề bài : Tính