Giải hệ phương trình có các phương trình sau : 5x+5y=30; y+5z=12; 5z+3x= 22
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(-1; +\infty )(−1;+∞)
(-\infty ; -2)(−∞;−2)
(-2; +\infty )(−2;+∞)
(-2; -1 )(−2;−1)
\(\left(x-2\right)\left(x^2-5x+4\right)=\left(x-2\right)\left(x^2-4x-x+4\right)=\left(x-2\right)\left(x-4\right)\left(x-1\right)< 0\)
khi đó có số số lẻ số <0
\(+,1\text{ số bé hơn 0}\Rightarrow x-4< 0;x-2>0\Leftrightarrow2< x< 4\)
\(+,3\text{ số bé hơn 0}\Rightarrow x-4< 0\Leftrightarrow x< 4\)
vậy 2<x<4 hoặc x<4
TH1, x-2>0 ->x>2 (1) từ (1), (2) -> x>2 (*)
x^2-5x+4<0 ->x(x-5)< -4 (2)
TH2, x-2<0 -> x<2 (3) Từ (3), (4) -> 2<x<5 -> x thuộc { 3;4} (**)
x^2-5x+4 > 0 -> x(x-5) > -4 -> x> 5 (4)
Từ (*); (**) -> x>2
\(\hept{\begin{cases}5x+5y=30\\y+5z=12\\3x+5z=22\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=6-y\\y+5z=12\\3x+5z=22\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y+5z=12\\3\left(6-y\right)+5z=22\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y+5z=12\\-3y+5z=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y+5z=12\\3y-5z=-4\end{cases}}\)
\(\Rightarrow4y=8\Rightarrow y=2\)
Thay giá trị của y vào phương trình: -3y + 5z = 4
\(-3\times2+5z=4\)
\(\Rightarrow z=2\)
Thế giá trị của y vào phương trình: x = 6 - y
\(\Rightarrow x=4\)