Bài 1: Cho đường tròn (O) lấy 3 điểm A, B, C. Gọi D, E, F theo thứ tự là điểm chính giữa của các cung AB(không chứa C), BC (không chứa A), CA(không chứa B). Gọi G và I lần lượt là giao điểm của AE với BF và BC, H là giao điểm của AB và DE. Chứng minh rằng
a)HA.EB=HB.EA
b)HG song song với BC
c)AE/BE=AB/BI
Bài 2: Cho tam giác ABC, phân giác AD. Vẽ đường tròn (O) qua A và tiếp xúc với BC tại D cắt các cạnh AB, AC lần lượt ở E và F. Chứng minh rằng
a)EF//BC
b)AB.BE=BD^2
c)Tam giác ADF đồng dạng với tam giác ABD
d)AD^2=AC.AE