K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2019

VÌ \(c\le3a\)

=> \(4\ge\left(a+2b\right)\left(\frac{1}{b}+\frac{3}{a}\right)\)

<=> \(\frac{5}{3}\ge\left(\frac{a}{b}+\frac{b}{a}\right)-\frac{b}{3a}\ge2-\frac{b}{3a}\)

=> \(\frac{b}{a}\ge1\)=> \(b\ge a\)

Khi đó 

\(\frac{a^2+2b^2}{ac}\ge\frac{3a^2}{a.3a}=1\)(ĐPCM)

Dấu bằng xảy ra khi \(c=3a=3b\)

2 tháng 8 2019

pt \(\Leftrightarrow\)\(x^4+2x^2y^2+y^4=2y^2-x^2+3\)

\(\Leftrightarrow\)\(\left(x^2+y^2\right)^2-2\left(x^2+y^2\right)+1=-3x^2+4\)

\(\Leftrightarrow\)\(\left(x^2+y^2-1\right)^2=-3x^2+4\le4\)

\(\Rightarrow\)\(-1\le x^2+y^2\le3\)

2 tháng 8 2019

Giả sử \(8< \sqrt{15}+\sqrt{17}\)

\(\Leftrightarrow64< 15+2\sqrt{15.17}+17\)(Bình phương hai vế)

\(\Leftrightarrow32< 2\sqrt{15.17}\)

\(\Leftrightarrow16< \sqrt{15.17}\)

\(\Leftrightarrow16< \sqrt{\left(16-1\right)\left(16+1\right)}\)

\(\Leftrightarrow\sqrt{16^2}< \sqrt{16^2-1}\)

\(\Leftrightarrow16^2< 16^2-1\)(vô lí)

Chứng minh tương tự điều giả sử \(8=\sqrt{15}+\sqrt{17}\)

Vậy \(8>\sqrt{15}+\sqrt{17}\)

https://olm.vn/hoi-dap/detail/61596070678.html

bn coppy link này nhé, có bài mak bn đang cần đấy

2 tháng 8 2019

cộng 0,5.x-1 và 1/16 vào cả 2 vế nó sẽ ra 2 cái bình phương bằng nhau.đoạn sau tự giải ko giải được thì ở nhà khỏi đi học.chúc em học tốt.

5 tháng 8 2019

\(x^2+2x+\frac{5}{2}=\frac{1}{2}\sqrt{\frac{1}{2}x-1}\)

\(\Leftrightarrow x^2+\frac{2.5}{4}x+\frac{25}{16}=\frac{x}{2}-1+\frac{2}{4}\sqrt{\frac{x}{2}-1}+\frac{1}{16}\)

\(\Leftrightarrow\left(x+\frac{5}{4}\right)^2=\left(\sqrt{\frac{x}{2}-1}+\frac{1}{4}\right)^2\)

Làm nốt