K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Sửa đề: ΔKMN~ΔKAC

Ta có: \(\widehat{BAM}=\widehat{MAC}=\dfrac{\widehat{BAC}}{2}\)

\(\widehat{BCN}=\widehat{ACN}=\dfrac{\widehat{BCA}}{2}\)

mà \(\widehat{BAC}=\widehat{BCA}\)(ΔBAC cân tại B)

nên \(\widehat{BAM}=\widehat{MAC}=\widehat{BCN}=\widehat{ACN}\)

Xét ΔKAN và ΔKCM có

\(\widehat{KAN}=\widehat{KCM}\)

\(\widehat{AKN}=\widehat{CKM}\)(hai góc đối đỉnh)

Do đó: ΔKAN~ΔKCM

=>\(\dfrac{KA}{KC}=\dfrac{KN}{KM}\)

=>\(\dfrac{KA}{KN}=\dfrac{KC}{KM}\)

Xét ΔKAC và ΔKNM có

\(\dfrac{KA}{KN}=\dfrac{KC}{KM}\)

\(\widehat{AKC}=\widehat{NKM}\)(hai góc đối đỉnh)

Do đó; ΔKAC~ΔKNM

b: Xét ΔNAC và ΔMCA có

\(\widehat{NAC}=\widehat{MCA}\)

CA chung

\(\widehat{NCA}=\widehat{MAC}\)

Do đó: ΔNAC=ΔMCA

=>NA=MC

Xét ΔMCK và ΔMAC có

\(\widehat{MCK}=\widehat{MAC}\)

\(\widehat{CMK}\) chung

Do đó; ΔMCK~ΔMAC

=>\(\dfrac{MC}{MA}=\dfrac{MK}{MC}\)

=>\(MC^2=MK\cdot MA\)

c: Xét ΔABC có AM là phân giác

nên \(\dfrac{BM}{CM}=\dfrac{AB}{AC}=\dfrac{9}{4,5}=2\)

=>BM=2CM

mà BM+CM=BC=9cm

nên BM=6cm; CM=3cm

Xét ΔBAM và ΔBCN có

\(\widehat{BAM}=\widehat{BCN}\)

BA=BC

\(\widehat{ABM}\) chung

Do đó: ΔBAM=ΔBCN

=>BM=BN

Xét ΔBAC có \(\dfrac{BN}{BA}=\dfrac{BM}{BC}\)

nên MN//AC

Xét ΔBAC có MN//AC

nên \(\dfrac{MN}{AC}=\dfrac{BM}{BC}\)

=>\(\dfrac{MN}{4,5}=\dfrac{6}{9}=\dfrac{2}{3}\)

=>MN=3(cm)

NV
7 tháng 5

\(\left(x-3\right)\left(2x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

7 tháng 5

\(\left(x-3\right)\)\(\left(2x-4\right)\)\(=\) \(0\)

\(\Rightarrow\) \(\left(x-3\right)\)\(=\) \(0\)  hoặc \(\left(2x-4\right)\)\(=\) \(0\)

\(TH1:\) \(\left(x-3\right)\)\(=\) \(0\)

            \(x\)         \(=\) \(0\) \(+\) \(3\)

            \(x\)         \(=\) \(3\)

\(TH2:\) \(\left(2x+4\right)\)\(=\) \(0\)

            \(2x\)        \(=\) \(0\) \(-\) \(4\)

            \(2x\)        \(=\) \(-4\)

              \(x\)        \(=\)  \(-4\) \(:\) \(2\)

              \(x\)        \(=\) \(-2\)

Vậy \(x\) \(\in\) { \(3\) \(;\) \(-2\) }

6 tháng 5

đề khó hiểu thế

nó có thanh công cụ mà bạn dùng nó mà viết đề

 

6 tháng 5

ĐKXĐ: m ≠ -1

a) Khi m = 3

⇒ (d₂): y = 4x + 5

Mà 3 ≠ 4 nên (d₁) và (d₂) cắt nhau

b) Để (d₁) // (d₂) thì m + 1 = 3 và 5 ≠ -2

*) m + 1 = 3

m = 3 - 1

m = 2 (nhận)

Vậy m = 2 thì (d₁) // (d₂)

a: Xét ΔCED vuông tại E và ΔCAB vuông tại A có

\(\widehat{ECD}\) chung

Do đó: ΔCED~ΔCAB

b: Xét ΔABC có AD là phân giác

nên \(\dfrac{CD}{DB}=\dfrac{CA}{AB}=\dfrac{12}{9}=\dfrac{4}{3}\)

=>\(\dfrac{CD}{CB}=\dfrac{4}{7}\)

=>\(\dfrac{CD}{15}=\dfrac{4}{7}\)

=>\(CD=\dfrac{60}{7}\left(cm\right)\)

Xét ΔCAB có ED//AB

nên \(\dfrac{ED}{AB}=\dfrac{CD}{CB}\)

=>\(\dfrac{ED}{9}=\dfrac{60}{7}:15=\dfrac{4}{7}\)

=>\(ED=\dfrac{36}{7}\left(cm\right)\)

5 tháng 5

Ý a phải là tính diện tích của hộp quà chứ bạn đề bài làm gì cho chiều cao của hình chóp tam giác đâu mà tính thể tích

a: 15p=0,25 giờ

Vận tốc trung bình mà Lan đi xe đạp từ nhà đến trường là:

1,8:0,25=7,2(km/h)

b: Thời gian còn lại là 15-1,5=13,5(phút)=0,225(giờ)

vận tốc Lan cần phải đi là:

1,8:0,225=8(km/h) 

1

a: Xét ΔAHN vuông tại N và ΔACH vuông tại H có

\(\widehat{HAN}\) chung

Do đó: ΔAHN~ΔACH

b: Xét ΔAMH vuông tại M và ΔAHB vuông tại H có

\(\widehat{MAH}\) chung

Do đó: ΔAMH~ΔAHB

=>\(\dfrac{AM}{AH}=\dfrac{AH}{AB}\)

=>\(AH^2=AM\cdot AB\)

=>\(AM\cdot15=12^2=144\)

=>AM=9,6(cm)

c: ΔANH~ΔAHC

=>\(\dfrac{AN}{AH}=\dfrac{AH}{AC}\)

=>\(AH^2=AN\cdot AC\)

=>\(AM\cdot AB=AN\cdot AC\)

=>\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HB=\sqrt{15^2-12^2}=9\left(cm\right)\)

ΔAHC vuông tại H

=>\(HA^2+HC^2=AC^2\)

=>\(HC=\sqrt{13^2-12^2}=5\left(cm\right)\)

BC=BH+CH=9+5=14(cm)

Xét ΔAMN và ΔACB có

\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

\(\widehat{MAN}\) chung

Do đó: ΔAMN~ΔACB

=>\(\dfrac{MN}{CB}=\dfrac{AM}{AC}\)

=>\(\dfrac{MN}{14}=\dfrac{9.6}{13}\)

=>\(MN=\dfrac{672}{65}\left(cm\right)\)

NV
4 tháng 5

Đề bài thiếu rồi em, ko có độ dài BC thì ko thể chứng minh tam giác này vuông

4 tháng 5

Giúp em với thầy

 

 

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

\(\widehat{ABC}\) chung

Do đó: ΔABC~ΔHBA

b: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

ΔHBA~ΔABC

=>\(\dfrac{HB}{AB}=\dfrac{BA}{BC}=\dfrac{HA}{AC}\)

=>\(\dfrac{HB}{6}=\dfrac{HA}{8}=\dfrac{6}{10}=\dfrac{3}{5}\)

=>\(HB=3\cdot\dfrac{6}{5}=3,6\left(cm\right);HA=8\cdot\dfrac{3}{5}=4,8\left(cm\right)\)

c: Xét ΔBAC có BI là phân giác

nên \(\dfrac{AI}{AB}=\dfrac{CI}{BC}\)

=>\(\dfrac{AI}{6}=\dfrac{CI}{10}\)

=>\(\dfrac{AI}{3}=\dfrac{CI}{5}\)

mà AI+CI=AC=8cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AI}{3}=\dfrac{CI}{5}=\dfrac{AI+CI}{3+5}=\dfrac{8}{8}=1\)

=>\(AI=3\cdot1=3\left(cm\right)\)