cho tam giác ABC cân tại B cos cacs đường phân giacs AM và CN cắt nhau tại K
a. chứng minh tam giác KMN đồng dạng với tam giác KBC
b.chứng minh MC2=MA .MK
c, tính MN biết AB =9cm AC =4,5cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-3\right)\left(2x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
\(\left(x-3\right)\)\(\left(2x-4\right)\)\(=\) \(0\)
\(\Rightarrow\) \(\left(x-3\right)\)\(=\) \(0\) hoặc \(\left(2x-4\right)\)\(=\) \(0\)
\(TH1:\) \(\left(x-3\right)\)\(=\) \(0\)
\(x\) \(=\) \(0\) \(+\) \(3\)
\(x\) \(=\) \(3\)
\(TH2:\) \(\left(2x+4\right)\)\(=\) \(0\)
\(2x\) \(=\) \(0\) \(-\) \(4\)
\(2x\) \(=\) \(-4\)
\(x\) \(=\) \(-4\) \(:\) \(2\)
\(x\) \(=\) \(-2\)
Vậy \(x\) \(\in\) { \(3\) \(;\) \(-2\) }
ĐKXĐ: m ≠ -1
a) Khi m = 3
⇒ (d₂): y = 4x + 5
Mà 3 ≠ 4 nên (d₁) và (d₂) cắt nhau
b) Để (d₁) // (d₂) thì m + 1 = 3 và 5 ≠ -2
*) m + 1 = 3
m = 3 - 1
m = 2 (nhận)
Vậy m = 2 thì (d₁) // (d₂)
a: Xét ΔCED vuông tại E và ΔCAB vuông tại A có
\(\widehat{ECD}\) chung
Do đó: ΔCED~ΔCAB
b: Xét ΔABC có AD là phân giác
nên \(\dfrac{CD}{DB}=\dfrac{CA}{AB}=\dfrac{12}{9}=\dfrac{4}{3}\)
=>\(\dfrac{CD}{CB}=\dfrac{4}{7}\)
=>\(\dfrac{CD}{15}=\dfrac{4}{7}\)
=>\(CD=\dfrac{60}{7}\left(cm\right)\)
Xét ΔCAB có ED//AB
nên \(\dfrac{ED}{AB}=\dfrac{CD}{CB}\)
=>\(\dfrac{ED}{9}=\dfrac{60}{7}:15=\dfrac{4}{7}\)
=>\(ED=\dfrac{36}{7}\left(cm\right)\)
Ý a phải là tính diện tích của hộp quà chứ bạn đề bài làm gì cho chiều cao của hình chóp tam giác đâu mà tính thể tích
a: 15p=0,25 giờ
Vận tốc trung bình mà Lan đi xe đạp từ nhà đến trường là:
1,8:0,25=7,2(km/h)
b: Thời gian còn lại là 15-1,5=13,5(phút)=0,225(giờ)
vận tốc Lan cần phải đi là:
1,8:0,225=8(km/h)
a: Xét ΔAHN vuông tại N và ΔACH vuông tại H có
\(\widehat{HAN}\) chung
Do đó: ΔAHN~ΔACH
b: Xét ΔAMH vuông tại M và ΔAHB vuông tại H có
\(\widehat{MAH}\) chung
Do đó: ΔAMH~ΔAHB
=>\(\dfrac{AM}{AH}=\dfrac{AH}{AB}\)
=>\(AH^2=AM\cdot AB\)
=>\(AM\cdot15=12^2=144\)
=>AM=9,6(cm)
c: ΔANH~ΔAHC
=>\(\dfrac{AN}{AH}=\dfrac{AH}{AC}\)
=>\(AH^2=AN\cdot AC\)
=>\(AM\cdot AB=AN\cdot AC\)
=>\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
ΔAHB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(HB=\sqrt{15^2-12^2}=9\left(cm\right)\)
ΔAHC vuông tại H
=>\(HA^2+HC^2=AC^2\)
=>\(HC=\sqrt{13^2-12^2}=5\left(cm\right)\)
BC=BH+CH=9+5=14(cm)
Xét ΔAMN và ΔACB có
\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
\(\widehat{MAN}\) chung
Do đó: ΔAMN~ΔACB
=>\(\dfrac{MN}{CB}=\dfrac{AM}{AC}\)
=>\(\dfrac{MN}{14}=\dfrac{9.6}{13}\)
=>\(MN=\dfrac{672}{65}\left(cm\right)\)
Đề bài thiếu rồi em, ko có độ dài BC thì ko thể chứng minh tam giác này vuông
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC~ΔHBA
b: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
ΔHBA~ΔABC
=>\(\dfrac{HB}{AB}=\dfrac{BA}{BC}=\dfrac{HA}{AC}\)
=>\(\dfrac{HB}{6}=\dfrac{HA}{8}=\dfrac{6}{10}=\dfrac{3}{5}\)
=>\(HB=3\cdot\dfrac{6}{5}=3,6\left(cm\right);HA=8\cdot\dfrac{3}{5}=4,8\left(cm\right)\)
c: Xét ΔBAC có BI là phân giác
nên \(\dfrac{AI}{AB}=\dfrac{CI}{BC}\)
=>\(\dfrac{AI}{6}=\dfrac{CI}{10}\)
=>\(\dfrac{AI}{3}=\dfrac{CI}{5}\)
mà AI+CI=AC=8cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AI}{3}=\dfrac{CI}{5}=\dfrac{AI+CI}{3+5}=\dfrac{8}{8}=1\)
=>\(AI=3\cdot1=3\left(cm\right)\)
a: Sửa đề: ΔKMN~ΔKAC
Ta có: \(\widehat{BAM}=\widehat{MAC}=\dfrac{\widehat{BAC}}{2}\)
\(\widehat{BCN}=\widehat{ACN}=\dfrac{\widehat{BCA}}{2}\)
mà \(\widehat{BAC}=\widehat{BCA}\)(ΔBAC cân tại B)
nên \(\widehat{BAM}=\widehat{MAC}=\widehat{BCN}=\widehat{ACN}\)
Xét ΔKAN và ΔKCM có
\(\widehat{KAN}=\widehat{KCM}\)
\(\widehat{AKN}=\widehat{CKM}\)(hai góc đối đỉnh)
Do đó: ΔKAN~ΔKCM
=>\(\dfrac{KA}{KC}=\dfrac{KN}{KM}\)
=>\(\dfrac{KA}{KN}=\dfrac{KC}{KM}\)
Xét ΔKAC và ΔKNM có
\(\dfrac{KA}{KN}=\dfrac{KC}{KM}\)
\(\widehat{AKC}=\widehat{NKM}\)(hai góc đối đỉnh)
Do đó; ΔKAC~ΔKNM
b: Xét ΔNAC và ΔMCA có
\(\widehat{NAC}=\widehat{MCA}\)
CA chung
\(\widehat{NCA}=\widehat{MAC}\)
Do đó: ΔNAC=ΔMCA
=>NA=MC
Xét ΔMCK và ΔMAC có
\(\widehat{MCK}=\widehat{MAC}\)
\(\widehat{CMK}\) chung
Do đó; ΔMCK~ΔMAC
=>\(\dfrac{MC}{MA}=\dfrac{MK}{MC}\)
=>\(MC^2=MK\cdot MA\)
c: Xét ΔABC có AM là phân giác
nên \(\dfrac{BM}{CM}=\dfrac{AB}{AC}=\dfrac{9}{4,5}=2\)
=>BM=2CM
mà BM+CM=BC=9cm
nên BM=6cm; CM=3cm
Xét ΔBAM và ΔBCN có
\(\widehat{BAM}=\widehat{BCN}\)
BA=BC
\(\widehat{ABM}\) chung
Do đó: ΔBAM=ΔBCN
=>BM=BN
Xét ΔBAC có \(\dfrac{BN}{BA}=\dfrac{BM}{BC}\)
nên MN//AC
Xét ΔBAC có MN//AC
nên \(\dfrac{MN}{AC}=\dfrac{BM}{BC}\)
=>\(\dfrac{MN}{4,5}=\dfrac{6}{9}=\dfrac{2}{3}\)
=>MN=3(cm)