Đề bài
Cho O là tâm đường tròn ngoại tiếp tam giác đều MNP. Góc nào sau đây bằng 12001200 ?
(A) (−−−→MN,−−→NP)(MN→,NP→);
(B) (−−→MO,−−→ON)(MO→,ON→);
(C) (−−−→MN,−−→OP)(MN→,OP→);
(D) (−−−→MN,−−→MP)(MN→,MP→).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) \(P=\frac{\sqrt{x}+\sqrt{x^2-2x+1}+1}{\sqrt{x^2-2x+1}}=\frac{\sqrt{x}+\left|x-1\right|+1}{\left|x-1\right|}\)
+) \(x=a+1-\sqrt{1+a^2+\frac{a^2}{\left(a+1\right)^2}}\)
\(=a+1-\sqrt{\left(a+1\right)^2-2a+\frac{a^2}{\left(a+1\right)^2}}\)
\(=a+1-\sqrt{\left(a+1-\frac{a}{a+1}\right)^2}\) vì a > 0 => \(a+1-\frac{a}{a+1}=\frac{a^2+a+1}{a+1}>0\)
\(=a+1-\left(a+1-\frac{a}{a+1}\right)=\frac{a}{a+1}\)
=> \(\left|x-1\right|=\left|\frac{a}{a+1}-1\right|=\left|-\frac{1}{a+1}\right|=\frac{1}{a+1}\)
=> \(P=\frac{\sqrt{\frac{a}{a+1}}+\frac{1}{a+1}+1}{\frac{1}{a+1}}=\sqrt{a\left(a+1\right)}+a+2\)
Bạn xem lại đề, tổng của các chữ số hay tích của các chữ số hay hiệu hay gì đó?
Tham khảo câu trả lời tại đây bạn nhé !
https://olm.vn/hoi-dap/detail/224113518607.html
Câu hỏi của An Van - Toán lớp 10 - Học toán với OnlineMath
Chúc bạn học tốt ^_^
Cho: \(x\ne-1\)và \(y\ne-1\)
g/s: \(x+y+xy=-1\)
<=> \(\left(x+xy\right)+\left(y+1\right)=0\)
<=> \(\left(x+1\right)\left(y+1\right)=0\)
<=> \(\orbr{\begin{cases}x=-1\\y=-1\end{cases}}\) vô lí vì trái với gỉa thiết
Vậy \(x\ne-1\)và \(y\ne-1\) thì \(x+y+xy\ne-1\)
Bạn xem lại đề ạ!
Nếu bạn đã chứng minh được D là trung điểm IQ; E là trung điểm KP; E là trung điểm KP; F là trung điểm LJ
Thì dễ dàng suy ra được: \(\overrightarrow{MD}=\frac{\overrightarrow{MI}+\overrightarrow{MQ}}{2}\); \(\overrightarrow{ME}=\frac{\overrightarrow{MK}+\overrightarrow{MP}}{2}\); \(\overrightarrow{MF}=\frac{\overrightarrow{MJ}+\overrightarrow{ML}}{2}\)
( Vì chúng ta có tính chất: Nếu I là trung điểm đoạn thẳng AB thì mọi điểm M ta có: \(2\overrightarrow{MI}=\overrightarrow{MA}+\overrightarrow{MB}\))
Vì x > 0 nên \(\frac{x}{3}>0,\frac{9}{x}>0\)
Áp dụng BĐT Cauchy cho 2 số dương, ta được:
\(\frac{x}{3}+\frac{9}{x}\ge2\sqrt{\frac{x}{3}.\frac{9}{x}}=2\sqrt{3}\)
Đẳng thức xảy ra khi \(x^2=27\Leftrightarrow x=3\sqrt{3}\)(Vì x > 0)
Vẽ −−→MQ=−−→NPMQ→=NP→
(MN→,NP→)=(MN→,MQ→)=120 độ.
Chọn (A).
Ngoài ra, có thể tính được:
(−−→MO,−−→ON)=60 độ \
(−−−→MN,−−→OP)=90 độ
(−−−→MN,−−→MP)=60 độ
ho O là tâm đường tròn ngoại tiếp tam giác đều MNP. Góc nào sau đây bằng 12001200 ? (
A) (−−−→MN,−−→NP)(MN→,NP→);
(B) (−−→MO,−−→ON)(MO→,ON→);
(C) (−−−→MN,−−→OP)(MN→,OP→);
(D) (−−−→MN,−−→MP)(MN→,MP→).
#Tiểu Cừu