Tinh:
\(\sqrt{2-\sqrt{3}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí pitago.
Ta có: \(AB^2=AD^2+BD^2=BE^2+AE^2\)
\(HC^2=HD^2+DC^2=HE^2+EC^2\)
=> \(AB^2+HC^2=AD^2+BD^2+HD^2+DC^2\)
\(=\left(AD^2+DC^2\right)+\left(BD^2+HD^2\right)=AC^2+BH^2\) (1)
và \(AB^2+HC^2=BE^2+AE^2+HE^2+EC^2\)
\(=\left(BE^2+EC^2\right)+\left(AE^2+HE^2\right)=BC^2+AH^2\)(2)
Từ (1) , (2) Ta có: \(AB^2+HC^2=AC^2+HB^2=BC^2+HA^2\)
b) Ta có: \(S_{AHB}+S_{AHC}+S_{BHC}=S_{ABC}=S\)
\(AB.HC=AB\left(CF-FH\right)=AB.CF-AB.FH\)
\(=2S_{ABC}-2S_{AHB}=2S-2S_{ABH}\)
Tương tự: \(BC.HA=2S-2S_{BHC}\)
\(CA.HB=2S-2S_{AHC}\)
Cộng lại ta có:
\(AB.HC+BC.AH+CA.HB=6S-2\left(S_{AHB}+S_{AHC}+S_{BHC}\right)\)
\(=6S-2S=4S\)(đpcm)
Ta có : \(\widehat{B}+\widehat{C}=90^o\)
\(\Rightarrow\cos C=\sin B=\frac{1}{3}\)
Ta có : \(\sin^2C+\cos^2C=1\Rightarrow\sin^2C=1-\cos^2C=\frac{8}{9}\)
\(\Rightarrow\sin C=\frac{2\sqrt{2}}{9}\)
=0.5176380902
study well
k nha'
ai k đúng cho mk mk trả lại gấp đôi