K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2019

a) Từ đề bài có: \(x\left(x-1\right)\le0\Rightarrow x^2\le x\)

Tương tự hai BĐT còn lại và cộng theo vế suy ra:

\(M=x+y+z-3\ge x^2+y^2+z^2-3=-2\)

Đẳng thức xảy ra khi (x;y;z) = (0;0;1) và các hoán vị của nó

Is it true?

18 tháng 8 2019

\(4\le\sqrt{x}+\sqrt{y}+\sqrt{xy}+1\le\sqrt{2\left(x+y\right)}+\frac{x+y}{2}+1\)

\(\Leftrightarrow\)\(8\le x+y+2\sqrt{x+y}\sqrt{2}+2=\left(\sqrt{x+y}+\sqrt{2}\right)^2\)

\(\Leftrightarrow\)\(\sqrt{x+y}+\sqrt{2}\ge\sqrt{8}\)

\(\Leftrightarrow\)\(x+y\ge\left(\sqrt{8}-\sqrt{2}\right)^2=2\)

\(\Rightarrow\)\(P=\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\ge2\)

Dấu "=" xảy ra khi \(x=y=1\)

18 tháng 8 2019

ĐK: \(x\ge-1;y\ge0\)

\(x+y+\sqrt{8y}+5=4\sqrt{x+1}+\sqrt{2}\sqrt{xy+y}\)

\(\Leftrightarrow\)\(\left(x+1-4\sqrt{x+1}+4\right)-\left(\sqrt{x+1}\sqrt{2y}-2\sqrt{2y}\right)+y=0\)

\(\Leftrightarrow\)\(\left(\sqrt{x+1}-2\right)^2-\sqrt{2y}\left(\sqrt{x+1}-2\right)+y=0\)

\(\Leftrightarrow\)\(\left(\sqrt{x+1}-2\right)^2-2\sqrt{\frac{y}{2}}\left(\sqrt{x+1}-2\right)+\frac{y}{2}+\frac{y}{2}=0\)

\(\Leftrightarrow\)\(\left(\sqrt{x+1}-\frac{y}{2}-2\right)^2+\frac{y}{2}=0\)

Có: \(\left(\sqrt{x+1}-\frac{y}{2}-2\right)^2+\frac{y}{2}\ge0\) ( do \(y\ge0\) ) 

Dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{x+1}-\frac{y}{2}-2=0\\\frac{y}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)

... 

18 tháng 8 2019

\(\frac{1}{x}+\frac{25}{y}\ge\frac{\left(1+5\right)^2}{x+y}\ge\frac{6^2}{6}=6\)

Dấu "=" xảy ra khi \(x+y=6\) và \(\frac{1}{x}=\frac{5}{y}=\frac{1+5}{x+y}=\frac{6}{6}=1\)\(\Rightarrow\)\(x=1;y=5\)

18 tháng 8 2019

Ta có \(xy\left(2x^2+1\right)-2x\left(2y^2+1\right)+1=x^3y^3\)

<=>\(x\left(x^2y^3-2x^2y-y+4y^2+2\right)=1\)

=> \(x^2y^3-2x^2y-y+4y^2+2=\frac{1}{x}\)

Do VT là số nguyên với x,y nguyên

=> \(\frac{1}{x}\)nguyên => \(x=\pm1\)

\(x=1\)=> \(y^3-3y+4y^2+1=0\)( không có nghiệm nguyên)

+ x=-1

=> \(y^3-3y+4y^2+3=0\)( không có nghiệm nguyên )

=> PT vô nghiệm 

Vậy PT vô nghiệm