Cho tam giác ABC có diện tích S. Gọi S1 là diện tích hình tròn ngoại tiếp tam giác, S2 là diện tích hình tròn nội tiếp tam giác. Chứng minh rằng 2S < S1 + S2.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM-GM ta được
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+a+b+c\ge2\sqrt{\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\left(a+b+c\right)}\)
Như vậy, để kết thúc chứng minh ta cần chỉ ra rằng
\(\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\left(a+b+c\right)\ge3\left(a^2+b^2+c^2\right)\)
Thật vậy, áp dụng BĐT Cauchy-Schwartz ta có:
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\)
Công việc cuối cần chứng minh \(\left(a+b+c\right)\left(a^2+b^2+c^2\right)\ge3\left(a^2b+b^2c+c^2a\right)\)
Hay \(\left(a^3+ab^2\right)+\left(b^3+bc^2\right)+\left(c^3+ca^2\right)\ge2\left(a^2b+b^2c+c^2a\right)\)
Đây là một đánh giá đúng theo BĐT AM-GM do đó BĐT ban đầu được chứng minh
Vĩ độ của Hưng Yên là 210 Bắc. Tính Độ dài vĩ tuyến qua Hưng Yên, biết bán kính Trái Đất là 6370 km.
Bn ko biết thì đừng có đăng linh tinh nhé hoktok 😋😋😋😋😋😋😋😋😋
Cho hình vuông biết diện tích là 81cm vuông.Tính độ dài một cạnh.
Chời ơi bài này dễ thế mà đứa học sinh lớp 1 còn biết làm?
EM MÌNH LỚP 1 NHẮM MẮT CŨNG LÀM ĐƯỢC NỮA