tìm x:a)x(x-3)-(x+2)(x-1)=3
b)\(x-\frac{x-1}{5}+\frac{x+2}{6}=4+\frac{x+1}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=\(\left(1+\frac{4}{x-2}\right):\left(\frac{x^2-4}{2}\right)\)
=\(\left(\frac{x-2}{x-2}+\frac{4}{x-2}\right):\left(\frac{\left(x-2\right)\left(x+2\right)}{2}\right)\)
=\(\frac{x-2+4}{x-2}\cdot\frac{2}{\left(x-2\right)\left(x+2\right)}\)
=\(\frac{x+2}{x-2}.\frac{2}{\left(x-2\right).\left(x+2\right)}\)
=\(\frac{2}{\left(x-2\right)^2}\)
\(a,\frac{x+1}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\)
\(\Leftrightarrow\frac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2\left(x^2+2\right)}{\left(x+2\right)\left(x-2\right)}\)
=> ( x + 1)( x + 2) + ( x - 1)( x - 2) = 2x2 + 4
<=> x2 + 2x + x + 2 + x2 - 2x - x + 2 = 2x2 + 4
<=> x2 + 2x + x + x2 - 2x - x - 2x2 = 4 - 2 - 2
<=> 0x = 0
Vậy phương trình vô số nghiệm
- Đa thức x2 - x + 1 ko phân tích được thành nhân tử vì nếu phân tích được thì phải có nghiệm ; mà :
\(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\) > 0 với mọi x nên vô nghiệm.
a, x( x - 3) - ( x + 2)( x - 1) = 3
<=> x2 - 3x - x2 + x - 2x + 2 = 3
<=> x2 - 3x - x2 + x - 2x = 3 - 2
<=> -4x = 1
<=> x =\(-\frac{1}{4}\)
Vậy_
b, \(x-\frac{x-1}{5}+\frac{x+2}{6}=4+\frac{x+1}{3}\)
\(\Leftrightarrow\frac{30x}{30}-\frac{\left(x-1\right)6}{30}+\frac{\left(x+2\right)5}{30}=\frac{120}{30}+\frac{\left(x+1\right)10}{30}\)
=> 30x - 6x + 6 + 5x + 10 = 120 + 10x + 10
<=> 30x - 6x + 5x - 10x = 120 + 10 - 6 - 10
<=> 19x = 114
<=> x = 6
Vậy _