K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2020

Gọi x; y lần lượt  là số tấn thóc đơ vị thứ nhất; thứ hai  thu hoạch được  trong năm ngoái ( x, y > 0 ; tấn thóc ) 

Ta có: x + y = 600 ( tấn thóc )  (1)

Năm nay đơn vị thứ nhất làm vượt mức 10% 

=> Đơn vị thứ nhất làm được: x + 10% x = 1,1 x ( tấn thóc )

Đơn vị thứ 2 làm vượt mức 20% 

=> Đơn vị thứ nhất làm được: y + 20% y = 1,2 y ( tấn thóc )

=> 1,1 x + 1,2y = 685 ( tấn thóc ) (2) 

Từ (1); (2) => x = 350 ( tấn thóc ) và y = 250 ( tấn thóc ) 

Vậy:...

31 tháng 3 2021

Gọi số tấn thóc mà đơn vị một thu hoạch đc vào năm ngoái là x (tấn)

Số tấn thóc mà đơn vị hai thu hoạch đc vào năm ngoái là y ( tấn .         X,y lớn hơn 0

Năm ngoái hai đơn vị sx nông nghiệp thu hoạch đc 600 tấn thóc => x + y = 600 (1) 

Năm nay ,đơn vị một vượt mức 10% nên thu hoạch đc số tấn thóc là 0,1x 

Đơn vị hai vượt mức 20% nên thu hoạch đc số tấn thóc là 0,2y

Nên năm nay thu hoạch hơn năm ngoái 685-600 = 85 (tấn)

Nên ta có pt : 0,1x + 0,2y = 85 (2)

(1),(2) => ta có hpt x+ y =600

                                   0,1x + 0,2y = 85

<=> x= 350 

       Y= 250

 

 

24 tháng 5 2020

Gọi thời gian máy cày thứ nhất  một mình làm xong công việc là x  ( > 0; giờ ) 

=>  thời gian máy cày thứ hai  một mình làm xong công việc là  x + 10 ( giờ )

1 giờ máy thứ nhất làm được: \(\frac{1}{x}\) ( công việc )

1 giờ máy thứ 2 làm được : \(\frac{1}{x+10}\) ( công việc ) 

1 giờ cả hai máy làm được: \(\frac{1}{12}\) ( công việc ) 

=> \(\frac{1}{x}+\frac{1}{x+10}=\frac{1}{12}\Leftrightarrow x+10+x=\frac{x^2+10x}{12}\)

<=> \(x^2-14x-120=0\Leftrightarrow\orbr{\begin{cases}x=-6\left(loai\right)\\x=20\left(tm\right)\end{cases}}\)

Vậy máy 1 làm riêng trong 20 giờ và máy thứ 2 làm riêng trong 30 giờ thì xong công việc.

25 tháng 5 2020

giúp mình đi vẽ hộ cái hình

cho đường tròn tâm O bán kính r,điểm A cố định nằm ngoài đường tròn.kẻ 2 tiếp tuyến AM,AN.Đường thẳng D đi qua A cắt đường tròn O tại B,C với AB<AC.Chứng minh 5 điểm A,M,N,O,I thuộc đường tròn

27 tháng 5 2020

1. PT hoành độ giao điểm:

x2−(2x−m2+9)=0⇔x2−2x+m2−9=0(∗)

Khi m=1

thì pt trên trở thành: x2−2x−8=0

⇔(x−4)(x+2)=0⇒x=4

hoặc x=−2

Khi x=4⇒y=x2=16

. Giao điểm thứ nhất là (4,16)

Khi x=−2⇒y=x2=4

. Giao điểm thứ hai là (−2,4)

2. (P)

và (d) cắt nhau tại 2 điểm phân biệt ⇔(∗)

có 2 nghiệm phân biệt (hai nghiệm ấy chính là giá trị của 2 hoành độ giao điểm)

⇔Δ′=1−(m2−9)>0⇔10>m2(1)

Hai giao điểm nằm về phía của trục tung, nghĩa là 2 hoành độ giao điểm x1,x2

trái dấu. Điều này xảy ra khi x1x2<0⇔m2−9<0(2)

Từ (1);(2)

suy ra m2−9<0⇔−3<m<3

24 tháng 5 2020

a) ĐK: \(x\ge0;x\ne1\)

Ta có: \(x-1=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)

\(x+\sqrt{x}-2=\left(x-1\right)+\left(\sqrt{x}-1\right)=\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)\)

=> \(P=\frac{3\left(\sqrt{x}+1\right)+\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{x+2-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{2+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{4\sqrt{x}}{\sqrt{x}+1}\)

b) \(P=\sqrt{x}-1\)

<=> \(\frac{4\sqrt{x}}{\sqrt{x}+1}=\sqrt{x}-1\)

<=> \(x-4\sqrt{x}-1=0\)

<=> \(\orbr{\begin{cases}\sqrt{x}=2+\sqrt{5}\\\sqrt{x}=2-\sqrt{5}< 0\left(loại\right)\end{cases}}\)

<=> \(x=9+4\sqrt{5}\)thỏa mãn

24 tháng 5 2020

a) ĐK: \(x\ge0;x\ne1\)

Trước tiên chúng ta tính: 

\(1-x\sqrt{x}=1-\left(\sqrt{x}\right)^3=\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)\)

\(1+x\sqrt{x}=1+\left(\sqrt{x}\right)^3=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)\)

khi đó:

P = \(\left(1+\sqrt{x}+x+\sqrt{x}\right)\left(1-\sqrt{x}+x-\sqrt{x}\right)\)

\(=\left(x+2\sqrt{x}+1\right)\left(x-2\sqrt{x}+1\right)\)

\(=\left(\sqrt{x}+1\right)^2.\left(\sqrt{x}-1\right)^2\)

\(=\left(x-1\right)^2\)

b) \(P< 7-4\sqrt{3}=4-2.2.\sqrt{3}+3=\left(2-\sqrt{3}\right)^2\)

=> \(\left(x-1\right)^2< \left(2-\sqrt{3}\right)^2\)

<=> \(\sqrt{3}-2< x-1< 2-\sqrt{3}\)

<=> \(\sqrt{3}-1< x< 3-\sqrt{3}\)

Đối chiếu điều kiện: \(\sqrt{3}-1< x< 3-\sqrt{3}\) và x khác 1.