K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2019

\(x^4-7x^2+4x+25\)

\(=x^4-8x^2+16+x^2+4x+4+5\)

\(=\left(x^2-4\right)^2+\left(x+2\right)^2+5\ge5\forall x\)

Dấu"=" xảy ra<=> \(\hept{\begin{cases}\left(x^2-4\right)^2=0\\\left(x+2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x^2=4\\x=-2\end{cases}\Rightarrow}x=-2}\)

Vậy GTNN của bt = 5 tại x=-2

A B M X Y C D Drawed by Hoi con bo

Chắc mk nghĩ thế này là ổn lắm rùi

Hội con 🐄 chúc bạn học tốt!!! 

23 tháng 8 2019

\(\frac{1}{3+\sqrt{7}}+\frac{1}{3-\sqrt{7}}=\frac{3-\sqrt{7}}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}+\frac{3+\sqrt{7}}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}=\frac{3-\sqrt{7}}{2}+\frac{3+\sqrt{7}}{2}=\frac{6}{2}=3\)

CHÚC BẠN HỌC TỐT 

23 tháng 8 2019

khó vậy bạn có đăng bài nào lớp 3456 ko mih làm cho nhưng bài dễ mih làm cho 

23 tháng 8 2019

Sửa lại đề nha , đề đúng nè :

\(\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{x}{x-1}\right):\)\(\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{x}{x+2\sqrt{x}+1}\right)\)

\(=\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{x}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right):\)\(\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{x}{\left(\sqrt{x}+1\right)^2}\right)\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)-x}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}:\frac{\sqrt{x}\left(\sqrt{x}+1\right)-x}{\left(\sqrt{x}+1\right)^2}\)

\(=\frac{x-\sqrt{x}-x}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}:\frac{x+\sqrt{x}-x}{\left(\sqrt{x}+1\right)^2}\)

\(=\frac{-\sqrt{x}\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\sqrt{x}}=-\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(\)

ĐK \(x\ge2\)

\(PT\Leftrightarrow x^2+2x\sqrt{x-2}+x-2=4\left(x-1\right)\)

\(\Leftrightarrow x^2-3x+2+2x\sqrt{x-2}=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)+2x\sqrt{x-2}=0\)

\(\Leftrightarrow\sqrt{x-2}\left[\left(x-1\right)\sqrt{x-2}+2x\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-2}=0\\\left(x-1\right)\sqrt{x-2}+2x=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\\left(x+1\right)^2\left(x+2\right)=4x^2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x^3+5x+2=0\left(loại\right)\end{cases}}\)

Vậy x=2 là nghiệm của pt