Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Đặt \(x=3k;y=5k\)
hay \(A=\frac{5.9k^2+3.25k^2}{10.9k^2-3.25k^2}=\frac{45k^2+75k^2}{90k^2-75k^2}=\frac{120k^2}{15k^2}=\frac{120}{15}=8\)
b, Ta có : \(x-y-z=0\Rightarrow x-y=z;x-z=y;x=y+z\)
\(B=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
\(=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)
hay \(\frac{y+z-z}{x}.\frac{x-z-x}{y}.\frac{x-y+y}{z}=\frac{y\left(-z\right).x}{xyz}=-1\)
tự kẻ hình :
a, có EI // AC (gt)
=> góc ACI = góc AIB (đồng vị)
có góc ACI = góc ABC do tam giác ABC cân tại A (gt)
=> góc EIB = góc EBI
=> tam giác EIB cân tại E (dh)
b, góc ACI = góc EIB (câu a)
góc ACI + góc FCO = 180
góc EIB + góc EIO = 180
=> góc FCO = góc EIO (1)
tam giác EIB cân tại E (câu a) => EI = EB (đn)
mà có EB = CF (gt)
=> FC = EI
xét tam giác COF và tam giác IOE có : góc CFO = góc OEI (so le trong CF // EI)
và (1)
=> tam giác COF = tam giác IOE (g-c-g)
=> FO = OE (đn)
hăm đúng thì chịu
\(7\left(x-2017\right)^2+y^2=23\Rightarrow7\left(x-2017\right)^2\le23\Leftrightarrow\left(x-2017\right)^2\le\frac{23}{7}\)
mà \(x\inℕ\Rightarrow\orbr{\begin{cases}x-2017=0\\x-2017=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2017\\x=2018\end{cases}}\)
Với \(x=2017\)thì \(y^2=23\)không có nghiệm tự nhiên.
Với \(x=2018\)thì \(7+y^2=23\Leftrightarrow y^2=16\Leftrightarrow y=4\)(vì \(y\inℕ\))
Vậy ta có nghiệm \(\left(x,y\right)=\left(2018,4\right)\).