Tìm GTNN và GTLN của biếu thức: \(A=\sqrt{x-2}+\sqrt{10-x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trừ hai vế của phương trình trên , ta có:
\(x+y+xy\left(2x+y\right)-x-y-xy\left(3x-y\right)=xy\)
\(\Rightarrow xy\left(2x+y\right)-xy\left(3x-y\right)-xy=0\)
\(\Rightarrow xy\left(2x+y-3x+y-1\right)=0\)
\(\Rightarrow xy\left(2y-x-1\right)=0\)
Đến đây xét TH và thay vào là ra
\(\sqrt{0,45.0,3.6}\)
\(=\sqrt{0,135.6}\)
\(=\sqrt{0,81}\)
\(=0,9\)
\(\left(x+y\right)^2\left(x^2+y^2-xy\right)=\left(x+y\right)\left(x+y\right)\left(x^2+y^2-xy\right)=\left(x+y\right)\left(x^3+y^3\right)\)
\(=x^4+y^4+xy^3+x^3y=x^4+y^4+xyy^2+xyx^2=x^4+y^4+3y^2+3x^2\)
TRừ vế theo vế của hai phương trình trên. Ta có:
=> \(-4x-2y+10x=20\)
<=> \(6x-2y=20\)
<=> \(3x-y=10\)
<=> \(y=3x-10\)
Thế vào phương trình đầu ta có:
\(x^2+\left(3x-10\right)^2-10x=0\)Em tự làm tiếp nhé!
Chị ơi bài này em làm rồi mà em đăng lộn , tí nữa em đăng bài khác chị giải hộ em với nhá . Cảm ơn chị nhiều ạ <3
Cô-si ngược dấu thôi~~
Ta có:\(\sqrt{12a+\left(b-c\right)^2}=\frac{1}{\sqrt{12}}\cdot\sqrt{12\left[12a+\left(b-c\right)^2\right]}\)
\(\le\frac{1}{\sqrt{12}}\cdot\frac{12+12a+\left(b-c\right)^2}{2}\)
Tương tự ta có:
\(K\le\frac{1}{\sqrt{12}}\left(\frac{12+12a+\left(b-c\right)^2}{2}+\frac{12+12b+\left(a-c\right)^2}{2}+\frac{12+12c+\left(a-b\right)^2}{2}\right)\)
\(=\frac{1}{\sqrt{12}}\cdot\frac{36+12\left(a+b+c\right)+2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)}{2}\)
Ta có:\(a^2+b^2+c^2\ge ab+bc+ca\) ( tự cm )
\(\Rightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)\ge0\)
\(\Rightarrow K\le\frac{1}{\sqrt{12}}\cdot36=6\sqrt{3}\)
P/S:Em ko chắc đâu ạ.sợ bị ngược dấu lắm.Nhất là đoạn cuối:(((
\(\sqrt{12a+\left(b-c\right)^2}\le\sqrt{12a+\left(b+c\right)^2}=\sqrt{12a+\left(3-a\right)^2}=a+3\)
:)
e chỉ biết giá trị lớn nhất thôi ạ:(
\(A=\sqrt{x-2}+\sqrt{10-x}\)
\(\Rightarrow A^2=\left(\sqrt{x-2}+\sqrt{10-x}\right)^2\)
Áp dụng BĐT Bunhiacopski ta được:
\(A^2\le\left(\sqrt{x-2}^2+\sqrt{10-x}^2\right)\left(1^2+1^2\right)=2\left(x-2+10-x\right)=16\)
\(\Rightarrow A\le4\) vì \(A\ge0\)
Dấu "=" chị tự xét hộ ạ.
\(A\ge\sqrt{x-2+10-x}=\sqrt{8}=2\sqrt{2}\)
Đẳng thức xảy ra khi \(x=2\text{hoặc }x=10\)