Tìm x, y nguyên
6x^2+19y^2+24x-2y+12xy-725=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+4x-y^2+4=\left(x^2+4x+4\right)-y^2=\left(x+2\right)^2-y^2\)
\(=\left(x+2-y\right)\left(x+2+y\right)\)
\(B=-2x^2+10x-8=-2x^2+10x-\frac{25}{2}+\frac{9}{2}\)
\(=-\left(2x^2-10x+\frac{25}{2}\right)+\frac{9}{2}\)
\(=-2\left(x^2-5x+\frac{25}{4}\right)+\frac{9}{2}\)
\(=-2\left[x^2-2.\frac{5}{2}x+\left(\frac{5}{2}\right)^2\right]+\frac{9}{2}\)
\(=-2\left(x-\frac{5}{2}\right)^2+\frac{9}{2}\)
Vì \(\left(x-\frac{5}{2}\right)^2\ge0\forall x\)\(\Rightarrow-2\left(x-\frac{5}{2}\right)^2\le0\forall x\)
\(\Rightarrow-2\left(x-\frac{5}{2}\right)^2+\frac{9}{2}\le\frac{9}{2}\forall x\)
hay \(B\le\frac{9}{2}\)
Dấu " = " xảy ra \(\Leftrightarrow x-\frac{5}{2}=0\)\(\Leftrightarrow x=\frac{5}{2}\)
Vậy \(maxB=\frac{9}{2}\)\(\Leftrightarrow x=\frac{5}{2}\)
Ta có:
\(B=-2x^2+10x-8\)
\(B=-2\left(x^2-5x+\frac{25}{4}\right)+\frac{9}{2}\)
\(B=-2\left(x-\frac{5}{2}\right)^2+\frac{9}{2}\le\frac{9}{2}\left(\forall x\right)\)
Dấu "=" xảy ra khi: x = 5/2
Vậy Max(B) = 9/2 khi x = 5/2
Ta có: \(2x^2-10x+14\)
\(=2\left(x^2-5x+\frac{25}{4}\right)+\frac{3}{2}\)
\(=2\left(x-\frac{5}{2}\right)^2+\frac{3}{2}\ge\frac{3}{2}>0\left(\forall x\right)\)
\(\Rightarrow2x^2-10x+14>0\)
GTLN chứ ?
B = -2x2 + 10x - 8
= -2( x2 - 5/2x + 25/4 ) + 9/2
= -2( x - 5/2 )2 + 9/2 ≤ 9/2 ∀ x
Dấu "=" xảy ra khi x = 5/2
=> MaxB = 9/2 <=> x = 5/2
Đề phải là tìm GTLN nhé
Ta có:
\(B=-2x^2+10x-8\)
\(B=-2\left(x^2-5x+\frac{25}{4}\right)+\frac{9}{2}\)
\(B=-2\left(x-\frac{5}{2}\right)^2+\frac{9}{2}\le\frac{9}{2}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(-2\left(x-\frac{5}{2}\right)^2=0\Rightarrow x=\frac{5}{2}\)
Vậy Max(B) = 9/2 khi x = 5/2
Ta có
\(2x^2-10x+14=\left(2x^2-10x\right)+14\)
\(=2\left(x^2-5x\right)+14\)
\(=2\left(x^2-2.\frac{5}{2}.x+\frac{25}{4}-\frac{25}{4}\right)+14\)
\(=2\left(x-\frac{5}{2}\right)^2+14-\frac{50}{4}\)
\(=2\left(x-\frac{5}{2}\right)^2+\frac{3}{2}\)
Vì \(2\left(x-\frac{5}{2}\right)^2\ge0\forall x\)
\(\frac{3}{2}>0\)
Nên \(2\left(x-\frac{5}{2}\right)^2+\frac{3}{2}>0\forall x\left(đpcm\right)\)
Ta có : 2x2 - 10x + 14
= 2( x2 - 5x + 25/4 ) + 3/2
= 2( x - 5/2 )2 + 3/2 ≥ 3/2 > 0 ∀ x
=> đpcm