2020 mũ trừ 1 chia 2020 mũ 2 cộng 2021
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là \(\overline{abc}\)
Viết thêm số 50 vào bên trái thì lấy số mới chia số ban đầu thì được thương là 401 nên \(\overline{50abc}=401\cdot\overline{abc}\)
=>\(50000+\overline{abc}=401\cdot\overline{abc}\)
=>\(400\cdot\overline{abc}=50000\)
=>\(\overline{abc}=125\)
Vậy: Số cần tìm là 125
\(\left(x-4\right)^2\left(x+4\right)-\left(x-4\right)\left(x+4\right)^2+3\left(x^2-16\right)\)
\(=\left(x^2-16\right)\left(x-4\right)-\left(x^2-16\right)\left(x+4\right)+3\left(x^2-16\right)\)
\(=\left(x^2-16\right)\left(x-4-x-4+3\right)\)
\(=-5\left(x^2-16\right)=-5x^2+80\)
\(\dfrac{2020^3+1}{2020^2-2019}=\dfrac{\left(2020+1\right)\left(2020^2-2020\cdot1+1\right)}{2020^2-2019}\)
\(=\dfrac{2021\cdot\left(2020^2-2019\right)}{2020^2-2019}\)
=2021
\(\left(x+3\right)\left(x^2-3x+9\right)=28\)
=>\(x^3+27=28\)
=>\(x^3=1=1^3\)
=>x=1
Tổng của hai số là 143x2=286
Tỉ số giữa số thứ nhất và số thứ hai là:
\(\dfrac{1}{7}:\dfrac{1}{6}=\dfrac{6}{7}\)
Tổng số phần bằng nhau là 6+7=13(phần)
Số thứ nhất là 286:13x6=132
Số thứ hai là 286-132=154
a: \(2\cdot5^2+3:71^0-54:3^3\)
\(=2\cdot25+3:1-54:27\)
=50+3-2=51
b: \(36\cdot4-4\cdot\left(82-7\cdot11\right)^2:4-2016^0\)
\(=144-\left(82-77\right)^2-1\)
\(=143-5^2=143-25=118\)
a: Vì AB//CD
nên \(\dfrac{MB}{MC}=\dfrac{AB}{DC}=\dfrac{1}{3}\)
=>\(\dfrac{S_{BAM}}{S_{MAC}}=\dfrac{1}{3}\)
b: Vì AB//CD
nên ΔMAB~ΔMDC
=>\(\dfrac{S_{MAB}}{S_{MDC}}=\left(\dfrac{AB}{DC}\right)^2=\dfrac{1}{9}\)
=>\(S_{MAB}=\dfrac{1}{9}\cdot S_{MDC}\)
=>\(\dfrac{S_{MAB}}{S_{ABCD}}=\dfrac{1}{8}\)
=>\(\dfrac{S_{MAB}}{64}=\dfrac{1}{8}\)
=>\(S_{MAB}=\dfrac{64}{8}=8\left(cm^2\right)\)
a: Số số hạng là \(\dfrac{x-5}{5}+1=\dfrac{x-5+5}{5}=\dfrac{x}{5}\left(số\right)\)
Tổng của dãy số là \(\left(x+5\right)\cdot\dfrac{x}{5}:2=\dfrac{x\left(x+5\right)}{10}\)
Do đó, ta có: \(\dfrac{x\left(x+5\right)}{10}=140\)
=>\(x\left(x+5\right)=1400\)
=>\(x^2+5x-1400=0\)
=>(x+40)(x-35)=0
=>\(\left[{}\begin{matrix}x=-40\left(loại\right)\\x=35\left(nhận\right)\end{matrix}\right.\)
b: Số số hạng là \(\dfrac{x-7}{4}+1=\dfrac{x-7+4}{4}=\dfrac{x-3}{4}\left(số\right)\)
Tổng của dãy số là \(\left(x+7\right)\cdot\dfrac{\left(x-3\right)}{4}:2=\dfrac{x^2+4x-21}{8}\)
Do đó, ta có: \(\dfrac{x^2+4x-21}{8}=75\)
=>\(x^2+4x-21=600\)
=>\(x^2+4x-621=0\)
=>\(\left(x+2\right)^2-25^2=0\)
=>(x+27)(x-23)=0
=>\(\left[{}\begin{matrix}x=-27\left(loại\right)\\x=23\left(nhận\right)\end{matrix}\right.\)
Sửa đề: \(\dfrac{2020^3-1}{2020^2+2021}\)
\(=\dfrac{\left(2020-1\right)\left(2020^2+2020+1\right)}{2020^2+2020+1}\)
=2020-1=2019