x^2 + 2 . x . 1/4 + (1/4)^2 =?
giải chi tiết từng bước ra giúp mik nhé :D
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{x^2-6x+9}{3}=\dfrac{\left(x-3\right)^2}{3}=\dfrac{1}{3}\left(x-3\right)^2\\ Mà:\left(x-3\right)^2\ge0\forall x\in R\Rightarrow\dfrac{1}{3}\left(x-3\right)^2\ge0\forall x\in R\\ Vậy:min_A=0\Leftrightarrow x=3\\ --\\ B=\dfrac{1}{x^2+10x+25}=\dfrac{1}{\left(x+5\right)^2}\left(ĐKXĐ:x\ne-5\right)\\ Mà:\left(x+5\right)^2\ge0\forall x\in R\\\Rightarrow B_{max}\Leftrightarrow\left(x+5\right)^2min\Leftrightarrow\left(x+5\right)=0\Leftrightarrow x=-5\left(loại\right)\)
Vậy KXĐ giá trị lớn nhất của B và giá trị biến x lúc đó
a) Phân thức biểu thị tỉ số diện tích của hình vuông và diện tích hình chữ nhật:
x²/(2xy)
Tử thức là x²
Mẫu thức là 2xy
b) Tại x = 2; y = 8
2²/(2.2.8) = 1/8
a) ĐKXĐ: x² - 25 ≠ 0
x ≠ 5 và x ≠ -5
b) A = (x² - 10x + 25)/(x² - 25)
= (x - 5)²/[(x - 5)(x + 5)]
= (x - 5)(x + 5)
c) Tại x = 3
⇒ A = (3 - 5)/(3 + 5)
= -1/4
d) A = 1/2
⇒ (x - 5)/(x + 5) = 1/2
⇒ 2(x - 5) = x + 5
⇒ 2x - 10 = x + 5
⇒ 2x - x = 5 + 10
⇒ x = 15
a) Phân thức \(A\) xác định khi: \(x^2-25\ne0\Leftrightarrow x\ne\pm5\)
b) \(A=\dfrac{x^2-10x+25}{x^2-25}\)
\(=\dfrac{\left(x-5\right)^2}{\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{x-5}{x+5}\)
c) Với \(x=3\Rightarrow tmdk\)
Thay \(x=3\) vào \(A\), ta được
\(A=\dfrac{3-5}{3+5}=-\dfrac{1}{4}\)
d) Với \(x\ne\pm5\): \(A=\dfrac{1}{2}\Leftrightarrow\dfrac{x-5}{x+5}=\dfrac{1}{2}\)
\(\Leftrightarrow2x-10=x+5\)
\(\Leftrightarrow2x-x=5+10\)
\(\Leftrightarrow x=15\left(tmdk\right)\)
\(\text{#}Toru\)
\(a,ĐKXĐ:x^2-25\ne0\Leftrightarrow\left(x-5\right)\left(x+5\right)\ne0\Leftrightarrow x\ne\pm5\\ b,A=\dfrac{x^2-10x+25}{x^2-25}=\dfrac{x^2-2.x.5+5^2}{\left(x-5\right)\left(x+5\right)}=\dfrac{\left(x-5\right)^2}{\left(x-5\right)\left(x+5\right)}=\dfrac{x-5}{x+5}\\ c,x=3\Rightarrow A=\dfrac{x-5}{x+5}=\dfrac{3-5}{3+5}=\dfrac{-2}{8}=-\dfrac{1}{4}\\ Vậy:x=3\Rightarrow A=-\dfrac{1}{4}\\ d,A=\dfrac{1}{2}\Leftrightarrow\dfrac{x-5}{x+5}=\dfrac{1}{2}\\ \Leftrightarrow2\left(x-5\right)=x+5\\ \Leftrightarrow2x-10=x+5\\ \Leftrightarrow2x-x=5+10\\ \Leftrightarrow x=15\\ Vậy:A=\dfrac{1}{2}\Leftrightarrow x=15\)
\(D=\dfrac{2ax-2x-3y+3ay}{4ax+6x+9y+6ay}=\dfrac{2x\left(a-1\right)+3y\left(a-1\right)}{2x\left(2a+3\right)+3y\left(2a+3\right)}\\ =\dfrac{\left(2x+3y\right)\left(a-1\right)}{\left(2x+3y\right)\left(2a+3\right)}=\dfrac{a-1}{2a+3}\)
Vậy GT biểu thức D không phụ thuộc vào x và y
\(C=\dfrac{\left(x+a\right)^2-x^2}{2x+a}=\dfrac{\left(x+a-x\right)\left(x+a+x\right)}{2x+a}\\ =\dfrac{a.\left(2x+a\right)}{2x+a}=a\)
Vậy GT biểu thức C không phụ thuộc vào x và y
\(a,\dfrac{x^5-2x^4+x^3}{x^4-2x^3+x^2}=\dfrac{x^3\left(x^2-2x+1\right)}{x^2\left(x^2-2x+1\right)}=\dfrac{x.x^2\left(x-1\right)^2}{x^2\left(x-1\right)^2}=x\left(đpcm\right)\\ b,\dfrac{4x^3-8x^2-x+2}{2x+1}=\dfrac{4x^2\left(x-2\right)-\left(x-2\right)}{2x+1}\\ =\dfrac{\left(4x^2-1\right)\left(x-2\right)}{2x+1}=\dfrac{\left(2x+1\right)\left(2x-1\right)\left(x-2\right)}{2x+1}=\left(2x-1\right)\left(x-2\right)\left(đpcm\right)\)
\(a,VT=\dfrac{x^5-2x^4+x^3}{x^4-2x^3+x^2}=\dfrac{x\left(x^4-2x^3+x^2\right)}{x^4-2x^3+x^2}=x=VP\left(x\ne0;x\ne1\right)\)
\(b,VT=\dfrac{4x^3-8x^2-x+2}{2x+1}\left(x\ne-\dfrac{1}{2}\right)\)
\(=\dfrac{4x^2\left(x-2\right)-\left(x-2\right)}{2x+1}\)
\(=\dfrac{\left(4x^2-1\right)\left(x-2\right)}{2x+1}\)
\(=\dfrac{\left(2x-1\right)\left(2x+1\right)\left(x-2\right)}{2x+1}\)
\(=\left(2x-1\right)\left(x-2\right)=VP\)
\(\text{#}Toru\)
a) \(\dfrac{3}{4ab^2}=\dfrac{3\cdot5a}{4ab^2\cdot5a}=\dfrac{15a}{20a^2b^2}\)
\(\dfrac{4}{5a^2b}=\dfrac{4\cdot4b}{5a^2b\cdot4b}=\dfrac{16b}{20a^2b^2}\)
b) \(\dfrac{x}{2x+6}=\dfrac{x}{2\left(x+3\right)}=\dfrac{x\left(x-3\right)}{2\left(x+3\right)\left(x-3\right)}\)
\(\dfrac{4}{x^2-9}=\dfrac{4}{\left(x+3\right)\left(x-3\right)}=\dfrac{8}{2\left(x+3\right)\left(x-3\right)}\)
c) \(\dfrac{2x}{x^3-1}=\dfrac{2x}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\dfrac{x+1}{x^2+x+1}=\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
d) \(\dfrac{x}{x^2+2x-3}=\dfrac{x}{\left(x-1\right)\left(x+3\right)}=\dfrac{x\left(x-1\right)}{\left(x-1\right)^2\left(x+3\right)}\)
\(\dfrac{3x}{x^2-2x+1}=\dfrac{3x}{\left(x-1\right)^2}=\dfrac{3x\left(x+3\right)}{\left(x-1\right)^2\left(x+3\right)}\)
\(\dfrac{-4}{x+3}=\dfrac{-4\left(x-1\right)^2}{\left(x-1\right)^2\left(x+3\right)}\)
có đáp án chx để mik giải