a,b,c lớn hơn hoặc bằng 0 a+b+c=3
Min,Max P=a^2+b^2+c^2+abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử z = min{x,y,z} \(\Rightarrow4=x+y+z+xyz\ge z^3+3z\Leftrightarrow\left(z-1\right)\left(z^2+z+4\right)\le0\Rightarrow z\le1\)(*)
Chọn t thỏa mãn \(\hept{\begin{cases}x+y+z+xyz=2t+z+t^2z\\2t+z+t^2z=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y-2t=\left(t^2-xy\right)z\left(1\right)\\2t+z+t^2z=4\left(2\right)\end{cases}}\)
Giả sử \(t^2< xy\Rightarrow2t>x+y\ge2\sqrt{xy}\Rightarrow t^2>xy\) (mâu thuẫn với giả sử)
Vậy \(t^2\ge xy\Rightarrow x+y\ge2t\). Đặt P = f(a;b;c). Xét hiệu:
\(f\left(x;y;z\right)-f\left(t;t;z\right)=z\left(x+y-2t\right)-\left(t^2-xy\right)\)
\(=z^2\left(t^2-xy\right)-\left(t^2-xy\right)=\left(z^2-1\right)\left(t^2-xy\right)\le0\)
Vậy: \(P=f\left(x;y;z\right)\le f\left(t;t;z\right)=t^2+2tz\)
Từ \(\left(2\right)\Rightarrow z=\frac{\left(4-2t\right)}{t^2+1}.\text{Do }z\ge0\Rightarrow4-2t\ge0\Rightarrow t\le2\)
Mặc khác do (*): \(\Rightarrow4=2t+z+t^2z\le t^2+2t+1\Rightarrow\left(t+3\right)\left(t-1\right)\ge0\Rightarrow2\ge t\ge1\)
Vậy ta tìm max của: \(f\left(t;t;z\right)=f\left(t;t;\frac{4-2t}{t^2+1}\right)=t^2+\frac{2t\left(4-2t\right)}{t^2+1}\)
Dễ thấy hàm số này đồng biến suy ra \(f\left(t;t;\frac{4-2t}{t^2+1}\right)\) đạt max khi t = 2. Khi đó \(P=f\left(a;b;c\right)\le f\left(t;t;\frac{4-2t}{t^2+1}\right)\le4\)
Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(2;2;0\right)\) và các hoán vị.
P/s: em hết cách rồi nên đành chơi kiểu này:(
Đường thẳng d đi qua gốc tọa độ nên d có phương trình dạng: y = ax
( d ) đi qua điểm N nên: 2 = a . 3 => a = \(\frac{2}{3}\)
Vậy phương trình đường thẳng d là: y = \(\frac{2}{3}\) x
Đề sai.Thử với \(x=y=\frac{1}{2}\) thì đề đúng ko ??
Chắc đề đúng là bài 4 của đề tuyển sinh vào 10 chuyên Hồ Chí Minh 2015-2016
Còn nếu cần ngay bây giờ thì ib e lm cho.
\(\sqrt{4x^2}=6\)
\(\left(\sqrt{4x^2}\right)^2=6^2\)
\(4x^2=36\)
\(x^2=9\)
\(x^2=\left(\pm3\right)^2\)
\(x=\pm3\)
\(\sqrt{4x^2}=6\)
\(\Leftrightarrow4x^2=36\)
\(\Leftrightarrow x^2=9\)
\(x=3\)
Ta có:
\(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow4x^2+4x+1=36\)
\(\Leftrightarrow4x\left(x+1\right)+1=36\)
\(\Leftrightarrow4x\left(x+1\right)=35\)
\(\sqrt{4x^2+4x+1}=6\)
\(\sqrt{\left(2x+1\right)^2}=6\)
\(\Rightarrow/2x+1/=6\)
TH1 : \(2x+1\ge0\Rightarrow2x\ge-1\Rightarrow x< \frac{-1}{2}\)
\(\Rightarrow2x+1=6\)
\(\Rightarrow2x=5\)\(\Rightarrow x=\frac{5}{2}\)
TH2 : \(2x+1< 0\Rightarrow2x=-1\Rightarrow x>\frac{-1}{2}\)
\(\Rightarrow2x+1=-6\)
\(\Rightarrow2x=-7\Rightarrow x=\frac{-7}{2}\)
min(!;1;1)
max (0;0;3)
Do vai trò của a, b, c là bình đẳng nên ta có thể giả sử \(a\ge b\ge c\)
*Tìm Min:
Cách 1:
Theo nguyên lí Dirichlet trong 3 số a -1; b-1; c-1 tồn tại ít nhất 2 số mà tích chúng không âm. Giả sử\(\left(a-1\right)\left(b-1\right)\ge0\Rightarrow abc\ge ca+bc-c\)
Từ đó \(P\ge a^2+b^2+c^2+ca+bc-c=a^2+b^2+c\left(a+b+c-1\right)\)
\(=\left(a^2+1\right)+\left(b^2+1\right)+2c-2\ge2\left(a+b+c\right)-2=4\)
Đẳng thức xảy ra khi \(a=b=c=1\)
*Tìm max:
\(P\le a^2+b^2+c^2+6abc\)
Ta sẽ chứng minh: \(a^2+b^2+c^2+6abc\le9=\left(a+b+c\right)^2\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2\right)+18abc\le\left(a+b+c\right)^3\)
\(VP-VP=2\left[a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2\right]\ge0\)
Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(0;0;3\right)\) và các hoán vị.
Bỏ 2 dòng đầu đi nha, nháp thôi á!