K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2020

Gọi J,R lần lượt là giao điểm của AI, AK với BC.

Ta có biến đổi góc:^BAR=^BAH+^HAR=^ACR+^RAC=^ARB vì vậy tam giác ABR cân tại B suy ra BO đồng thời là đường cao

Tương tự thì CO là đường cao khi đó O là trực tâm của tam giác AIK

Vậy ta có đpcm

hình vẽ trong Thống kê hỏi đáp

5 tháng 8 2020

bài 1:

AI _|_ BC tại I => \(\widehat{AIB}=\widehat{AIC}=90^o\)

BD _|_ AC tại D => \(\widehat{ADB}=\widehat{CDB}=90^o\)

xét tam giác AIC và tam giác BDC có \(\hept{\begin{cases}\widehat{AIB}=\widehat{AIC}=90^o\\\widehat{C}chung\end{cases}}\)

=> tam giác AIC đồng dạng với tam giác BCD (g-g)

b) xét tam giác ABC có AI và BD là 2 đường cao cắt nhau tại H => H là trực tâm tam giác ABC

=> CH _|_ AB => H là trực tâm tam giác ABC

xét tam giác CEB và tam giác IAB có: \(\hept{\begin{cases}\widehat{CEB}=\widehat{AIB}=90^o\\\widehat{B}chung\end{cases}\Rightarrow\Delta CEB~\Delta AIB\left(g-g\right)\Rightarrow\frac{CB}{AB}=\frac{EB}{IB}}\)

=> CB.IB=EB.AB (1)

xét tam giác CIH và CEB có \(\hept{\begin{cases}\widehat{CIH}=\widehat{CEB}=90^o\\\widehat{C}chung\end{cases}\Rightarrow\Delta CIH~\Delta CEB\left(g-g\right)\Rightarrow\frac{CI}{CE}=\frac{CH}{CB}}\)

=> CI.CB=CE.CH (2)

từ (1) và (2) => EB.AB+CH.CE=CB.IB+CI.CB

\(\Leftrightarrow BE\cdot BA+CH\cdot CE=\left(IB+IC\right)BC=BC^2\)

\(\Leftrightarrow BE\cdot BA+CH\cdot CE=BC^2\)

5 tháng 8 2020

gọi Vn là thể tích nước chứa trong bình 

Vb là thể tích của bi nhôm , klr của nước và nhom lần lượt là Dn , Db , ndr lần lượt là cn , cb 

do bình chưa đầy nước nên khi thả viên bi vào lượng nước tràn ra có thể tích = thể tích của bi nhôm ( Vt ( V tràn ) = Vb) 

ta có ptcbn lần 1 

mbcb ( t-t1 ) = m'n.cn (t-t0 ) 

vs m'n là kl nước sau khi bị tràn 

<=> db.vb .cb(t-t1) = (vn-vb ) dncn(t1-t0)

thay số ta đc : Vb (188190cb+ 43260000) = 43260000vn (1)

- khi thả thêm 1 viên bi nữa ta có ptcbn 

(m'n.cn + mb.cb ) ( t2-t1 ) = mb.cb(t-t2 )

[(vn-2vb) dn.cn+db.vb.cb] (t2-t1 ) = db.vb.cb(t-t2)

thay số vào ta đc : vb ( 121770cb + 103320000) = 51660000vn (2) 

lấy (1) : (2 )  ta có

vb(188190cb+43260000)/ vb(121770cb+103320000) = 43260000vn/ 51660000vn 

=> cb = 501,7J/kg.k 

5 tháng 8 2020

DÂN CHƠI KO TRẢ LỜI ĐC VÌ DÂN CHƠI CHƯA HỌC. MỚI  LỚP 7. CHỊU

5 tháng 8 2020

Làm bừa thôi nhé:)

\(A=\sqrt{a^2+\frac{1}{a^2}}+\sqrt{b^2+\frac{1}{b^2}}\)

\(\ge\sqrt{2\sqrt{a^2.\frac{1}{a^2}}}+\sqrt{2\sqrt{b^2.\frac{1}{b^2}}}\)

\(=\sqrt{2}+\sqrt{2}=2\sqrt{2}\)

Dấu "=" xảy ra khi: \(a=b=1\)

5 tháng 8 2020

bổ sung thêm đk a+b=4

áp dụng bđt Bunhiacopxki ta có:

\(\hept{\begin{cases}\sqrt{a^2+\frac{1}{a^2}}=\frac{1}{\sqrt{17}}\sqrt{\left(a^2+\frac{1}{a^2}\right)\cdot\left(4^2+1^2\right)}\ge\frac{1}{\sqrt{17}}\left(4a+\frac{1}{a}\right)\\\sqrt{b^2+\frac{1}{b^2}}=\frac{1}{\sqrt{17}}\sqrt{\left(b^2+\frac{1}{b^2}\right)\left(4^2+1\right)}\ge\frac{1}{\sqrt{17}}\left(4b+\frac{1}{b}\right)\end{cases}}\)

khi đó ta được \(A\ge\frac{1}{\sqrt{17}}\left[4\left(a+b\right)+\left(\frac{1}{a}+\frac{1}{b}\right)\right]\)

ta để sy thấy \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)do đó áp dụng bđt Cauchy vfa giả thiết ta được

\(A\ge\frac{1}{\sqrt{17}}\left[4\left(a+b\right)+\frac{4}{a+b}\right]=\frac{1}{\sqrt{17}}\left[\frac{a+b}{4}+\frac{4}{a+b}+\frac{15\left(a+b\right)}{4}\right]\)\(\ge\frac{1}{\sqrt{17}}\left[2+15\right]=\sqrt{17}\)

dấu đẳng thức xảy ra khi \(\hept{\begin{cases}\frac{a}{4}=\frac{1}{a}\\\frac{b}{4}=\frac{1}{b}\end{cases}\Leftrightarrow a=b=2}\)

5 tháng 8 2020

a, \(\orbr{\begin{cases}2x-3=2x-3\left(yes\forall x\right)\\3-2x=2x-3< =>4x=6< =>x=\frac{3}{2}\end{cases}}\)

b,\(\orbr{\begin{cases}5x-4=4-5x< =>10x=8< =>x=\frac{4}{5}\\4-5x=4-5x\left(yes\forall x\right)\end{cases}}\)

c,\(\orbr{\begin{cases}2x+3=2x+2\\-2x-3=2x+2\end{cases}< =>\orbr{\begin{cases}1=0\left(vo-ly\right)\\4x=-5< =>x=-\frac{5}{4}\end{cases}}}\)

tự lm tiếp

5 tháng 8 2020

d, \(\left|5x-3\right|=5x-5\Leftrightarrow\orbr{\begin{cases}5x-3=5x-5\\-5x+3=5x-5\end{cases}\Leftrightarrow\orbr{\begin{cases}2\ne0\\-10x+8=0\end{cases}\Leftrightarrow}x=\frac{4}{5}}\)

e, \(\left|x^2-3x+3\right|=-x^2+3x-1\Leftrightarrow\orbr{\begin{cases}x^2-3x+3=-x^2+3x-1\\-x^2+3x-3=-x^2+3x-1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x^2-6x+4=0\\-2\ne0\end{cases}}\)Làm nốt nhé !

f, \(\left|x^2-9\right|=x^2-9\Leftrightarrow\orbr{\begin{cases}x^2-9=x^2-9\\-x^2+9=x^2-9\end{cases}\Leftrightarrow-2x^2+18=0}\)

\(\Leftrightarrow-2x^2=-18\Leftrightarrow x^2=9\Leftrightarrow x=\pm3\)

4 tháng 8 2020

Bài làm

a) Ta có: ( a - b + c )2 = [ a - ( b - c ) ]2 

= a2 - 2a( b - c ) + ( b - c )2 

= a2 - 2ab + 2ac + b2 - 2bc + c2 

= a2 + b2 + c2 + 2ac - 2ab - 2bc 

Mik làm mấy lần rồi nhưng vẫn ra kết quả như vậy, bạn xem lại đề nhé.

b) Ta có: a2 + b2 + c2 > ab + bc + ca

=> 2( a2 + b2 + c2 ) > 2( ab + bc + ca )

=> 2a2 + 2b2 + 2c2 > 2ab + 2bc + 2ca

=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca > 0

=> ( a2 + b2 + c2 ) + ( a2 + b2 + c2 - 2ab - 2bc - 2ca ) > 0

=> ( a2 + b2 + c2 ) + ( a - b - c )2 > 0 ( Luôn đúng )

Vậy a2 + b2 + c2 > ab + bc + ca ( đpcm ).

c) a2 + b2 + 1 > a + b + ab ( mik nghĩ cái a ở vế phải phải là a thôi chứ không phỉa a^2. bạn kiểm tra đề nha )

=> 2a2 + 2b2 + 2 > 2a + 2b + 2ab

=> 2a2 + 2b2 + 2 - 2a - 2b - 2ab > 0

=> ( a2 - 2ab + b2 ) + ( a2 - 2a + 1 ) + ( b2 - 2b + 1 ) > 0

=> ( a - b )2 + ( a - 1 )2 + ( b - 1 )2 > 0 ( luôn đúng )

Vậy a2 + b2 + 1 > a + b + ab ( đpcm )

4 tháng 8 2020

\(1,\left(a-b+c\right)^2=\left[\left(a-b\right)+c\right]^2\)

\(=\left(a-b\right)^2+2\left(a-b\right)c+c^2\)

\(=a^2+b^2+c^2-2ab-2bc-2ca\)

\(2,..2a^2+2b^2+2c^2-2ab-2ac-2bc\)

\(=\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\)

\(=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Rightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

Dấu "=" xảy ra khi a = b = c

3, Sửa đề : \(a^2+b^2+1\ge a+b+ab\)

Ta có : \(2a^2+2b^2+2-2a-2b-2ab\)

\(=\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\)

\(=\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)

\(\Rightarrow2a^2+2b^2+2\ge2a+2b+2ab\)

\(\Leftrightarrow a^2+b^2+1\ge a+b+ab\)

Dấu "=" xảy ra khi a = b = 1

4 tháng 8 2020

Bài làm:

a) Ta có: \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow2a^2+2b^2-a^2-2ab-b^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)

luôn đúng

b) \(\left(a+b+c\right)^2\)

\(=\left[\left(a+b\right)+c\right]^2\)

\(=\left(a+b\right)^2+2\left(a+b\right)c+c^2\)

\(=a^2+2ab+b^2+2ca+2bc+c^2\)

\(=a^2+b^2+c^2+2ab+2bc+2ca\)

4 tháng 8 2020

a) Ta có : \(2\left(a^2+b^2\right)-\left(a+b\right)^2=2a^2+2b^2-\left(a^2+2ab+b^2\right)\)

\(=2a^2+2b^2-a^2-2ab-b^2\)

\(=a^2-2ab+b^2\)

\(=\left(a-b\right)^2\ge0\)( đúng với mọi a,b )

\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\left(đpcm\right)\)

Dấu " = " xảy ra <=> a = b = 0

b) \(VT=\left(a+b+c\right)^2=\left[\left(a+b\right)+c\right]^2\)

\(=\left(a+b\right)^2+2\left(a+b\right)c+c^2\)

\(=a^2+2ab+b^2+2ac+2bc+c^2\)

\(=a^2+b^2+c^2+2ab+2bc+2ac=VP\left(đpcm\right)\)

4 tháng 8 2020

-4x2 + 4x - 3

= -4x2 + 4x - 1 - 2

= -( 4x2 - 4x + 1 ) - 2

= -( 2x - 1 )2 - 2 

\(-\left(2x-1\right)^2\le0\forall x\Rightarrow-\left(2x-1\right)^2-2\le-2< 0\forall x\)( đpcm )

4 tháng 8 2020

\(-x^2-6x-9< 0\left(x\ne-3\right)\)

\(< =>-\left(x^2+2.3x+3^3\right) < 0\)

\(< =>-\left(x+3\right)^2< 0\)

Do \(\left(x+3\right)^2>0\)Suy ra \(-\left(x+3\right)^2< 0\)

Hay \(-x^2-6x-9< 0\)

Vậy ta có điều phải chứng minh 

mình có thêm đề là x khác -3 nhé

5 tháng 8 2020

a) Xét tam giác EBD và tam giác ABC ta có: \(\hept{\begin{cases}\widehat{EBD}-chung\\\widehat{DEB}=\widehat{BAC}\left(=90\right)\end{cases}}\)

\(\Rightarrow|\Delta EBD~\Delta ABC\left(g.g\right)\)

b) Từ 2 tam giác đồng dạng trên, ta có: \(\frac{EB}{AB}=\frac{BD}{BC}\Rightarrow BE.BC=BD.DA\left(dpcm\right)\)

c Xét tam giác BEA và tam giác BDC ta có: \(\hept{\begin{cases}\frac{EB}{AB}=\frac{BD}{BC}\left(cmt\right)\\\widehat{B}-chung\end{cases}}\)

\(\Rightarrow\Delta BEA~\Delta BDC\left(c.g.c\right)\Rightarrow\widehat{BAE}=\widehat{BCD}\left(dpcm\right)\)