Tồn tại không số nguyên tố p và số nguyên dương n thỏa mãn 2n .p2+1 là lập phương của một số nguyên dương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
\(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=15\)
\(x^3-3x^2+9x+3x^2-9x+27-x\left(x^2-2^2\right)=15\)
\(x^3+27-x^3+2^2x=15\)
\(27-4x=15\)
\(4x=12\)
\(x=3\)
Đặt: \(5p+1=a^3;a\inℕ^∗\)
=> \(5p=a^3-1\)
<=> \(5p=\left(a-1\right)\left(a^2+a+1\right)\)
<=> \(a-1;a^2+a+1\) đều là ước của 5p \(\in\left\{1;5;p;5p\right\}\)
Do: \(a\inℕ^∗\) => \(a-1< a^2+a+1\) Do: p là SNT => \(1< 5p\)
=> Ta thực tế chỉ phải xét 3 trường hợp:
TH1: \(\hept{\begin{cases}a-1=1\\a^2+a+1=5p\end{cases}}\)
=> \(a=2\)
=> \(5p=2^2+2+1=4+2+1=7\)
=> \(p=\frac{7}{5}\) => Loại do p là SNT.
TH2: \(\hept{\begin{cases}a-1=5\\a^2+a+1=p\end{cases}}\)
=> \(a=6\)
=> \(p=6^2+6+1=43\)
THỬ LẠI: \(5p+1=5.43+1=216=6^3\left(tmđk\right)\)
TH3: \(\hept{\begin{cases}a-1=p\\a^2+a+1=5\end{cases}}\)
=> \(a^2+a=4\)
=> Thử \(a=1;a=2\)đều loại. Và \(a>2\) thì \(a^2+a>4\) (LOẠI)
a = 0 cũng loại do a thuộc N*.
Vậy duy nhất có nghiệm \(p=43\) là thỏa mãn điều kiện.
g) G = (x - 3)(x + 5) + 40
= x2 + 2x - 15 + 40
= (x2 + 2x + 1) + 24 = (x + 1)2 + 24 \(\ge\)24
Dấu "=" xảy ra <=> x + 1 = 0
=> x = -1
Vận Min G = 24 <=> x = -1
h) H = (x - 2)(x + 4) - 10
= x2 + 2x - 8 - 10
= (x2 + 2x + 1) - 19 = (x + 1)2 - 19 \(\ge\)-19
Dấu "=" xảy ra <=> (x + 1) = 0 => x = -1
Vậy Min H = -19 <=> x = -1
a) Trong \(\Delta\)ABC vuông tại A theo định lí Pitago ta có ;
\(CB=\sqrt{3^2+4^2}=5\left(cm\right)\)
Diện tích xung quanh của lăng trụ :
(3 + 4 + 5).6 = 72(cm2)
b) Diện tích mặt đáy là :
\(\frac{1}{2}\cdot3\cdot4=6\left(cm^2\right)\)
Thể tích của lăng trụ là:
6 x 6 = 36(cm2)
Bài giải
a) Diện tích toàn phần là
2.10.(12+9)+2.12.9=636(m2)2.10.(12+9)+2.12.9=636(m2)
Thể tích của hình hộp là
12.9.10=1080(m3)12.9.10=1080(m3)
b) Áp dụng Định lý Pythagore ta có
AH=√AE2+AD2=√102+92=√181(cm)AH=AE2+AD2=102+92=181(cm)
Áp dụng Định lý Pythagore ta có
AC=√AB2+BC2=√92+122=15(cm)AC=AB2+BC2=92+122=15(cm)
Áp dụng Định lý Pythagore ta có
AG=√AC2+CG2=√225+102=√325=5√13(cm)
Đ/S :...
nếu đúng mong mn k cho mk
Bài gải
a, Diện tích toàn phần là :
2.10.( 12 + 9 ) + 2.12.9 = 636 (m2)
Thể tích của hình hộp là :
12.9.10=1080 (m3)
b, áp dụng định lý plythagore ta có :
AH = \(\sqrt{ }\)