kết quả của phép tính (3x+1/3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Max chứ không phải Min bạn nhé !
A = -2x2 + 5x - 17
A = -2( x2 - 5/2x + 25/16 ) - 111/8
A = -2( x - 5/4 )2 - 111/8
\(-2\left(x-\frac{5}{4}\right)^2\le0\forall x\Rightarrow-2\left(x-\frac{5}{4}\right)^2-\frac{111}{8}\le-\frac{111}{8}\)
Dấu " = " xảy ra <=> x - 5/4 = 0 => x = 5/4
=> MaxA = -111/8 <=> x = 5/4
B = -x2 + 4x - 5
B = -x2 + 4x - 4 - 1
B = -( x2 - 4x + 4 ) - 1
B = -( x - 2 )2 - 1
\(-\left(x-2\right)^2\le0\forall x\Rightarrow-\left(x-2\right)^2-1\le-1\)
Dấu " = " xảy ra <=> x - 2 = 0 => x = 2
=> MaxB = -1 <=> x = 2
C = -4x2 - 4x - 2
C = -( 4x2 + 4x + 1 ) - 1
C = -( 2x + 1 )2 - 1
\(-\left(2x+1\right)^2\le0\forall x\Rightarrow-\left(2x+1\right)^2-1\le-1\)
Dấu " = " xảy ra <=> 2x + 1 = 0 => x = -1/2
=> MaxC = -1 <=> x = -1/2
D = -6 - 8x - 16x2
D = -16( x2 + 1/2x + 1/16 ) - 5
D = -16( x + 1/4 )2 - 5
\(-16\left(x+\frac{1}{4}\right)^2\le0\forall x\Rightarrow-16\left(x+\frac{1}{4}\right)^2-5\le-5\)
Dấu " = " xảy ra <=> x + 1/4 = 0 => x = -1/4
=> MaxD = -5 <=> x = -1/4
\(A=-2x^2+5x-17=-2\left(x^2-\frac{5}{2}+\frac{5^2}{4^2}\right)-\frac{111}{8}\)
\(=-2\left(x-\frac{5}{4}\right)^2-\frac{111}{8}\le-\frac{111}{8}\)
Dấu = xảy ra \(< =>-2\left(x-\frac{5}{4}\right)^2=0\Leftrightarrow x-\frac{5}{4}=0\Leftrightarrow x=\frac{5}{4}\)
Vậy \(Max_A=-\frac{111}{8}\)khi \(x=\frac{5}{4}\)
\(B=-x^2+4x-5=-\left(x^2-4x+4\right)-1\)
\(=-\left(x-2\right)^2-1\le-1\)
Dấu = xảy ra \(< =>-\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy \(Max_B=-1\)khi \(x=2\)
\(C=-4x^2-4x-2=-\left(4x^2+4x+2\right)\)
\(=-\left(4x^2+4x+1\right)-1=-\left(2x+1\right)^2-1\le-1\)
Dấu = xảy ra \(< =>-\left(2x+1\right)^2=0\Leftrightarrow2x+1=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy \(Max_C=-1\)khi \(x=-\frac{1}{2}\)
\(D=-6-8x-16x^2=-\left(16x^2+8x+6\right)\)
\(=-\left[\left(4x\right)^2+2.4x+1\right]-5=-\left(4x+1\right)^2-5\le-5\)
Dấu = xảy ra \(< =>-\left(4x+1\right)^2=0\Leftrightarrow4x+1=0\Leftrightarrow x=-\frac{1}{4}\)
Vậy \(Max_D=-5\)khi \(x=-\frac{1}{4}\)
Bài làm:
Ta có: Tại x = 11 thì giá trị của B là
\(B=x\left(x^2-3x+3\right)=11\left(11^2-3.11+3\right)\)
\(=11.91=1001\)
Đặt: \(A=\left(x-3\right)\left(x+3\right)+2\left(2x+1\right)^2\)
=> \(A=x^2-9+2\left(4x^2+4x+1\right)\)
=> \(A=x^2-9+8x^2+8x+2\)
=> \(A=9x^2+8x-7\)
=> \(A=\left(3x+\frac{4}{3}\right)^2-\frac{79}{9}\)
Có: \(\left(3x+\frac{4}{3}\right)^2\ge0\forall x\Rightarrow\left(3x+\frac{4}{3}\right)^2-\frac{79}{9}\ge-\frac{79}{9}\)
=> \(A\ge-\frac{79}{9}\)
DẤU "=" XẢY RA <=> \(\left(3x+\frac{4}{3}\right)^2=0\)
<=> \(x=-\frac{4}{9}\)
Vậy A min = \(-\frac{79}{9}\) <=> \(x=-\frac{4}{9}\)
( x - 3 )( x + 3 ) + 2( 2x + 1 )2
= x2 - 9 + 2( 4x2 + 4x + 1 )
= x2 - 9 + 8x2 + 8x + 2
= 9x2 + 8x - 7
= 9x2 + 8x + 16/9 - 79/9
= ( 3x + 4/3 )2 - 79/9
\(\left(3x+\frac{4}{3}\right)^2\ge0\forall x\Rightarrow\left(3x+\frac{4}{3}\right)^2-\frac{79}{9}\ge-\frac{79}{9}\)
Dấu " = " xảy ra <=> 3x + 4/3 = 0 => x = -4/9
=> GTNN của biểu thức = -79/9 <=> x = -4/9
\(\Leftrightarrow6x^2-14x+4-6x^2-12x+18-7x+3=0\)
\(\Leftrightarrow-33x=-25\Rightarrow x=\frac{25}{33}\)
2( 3x - 1 )( x - 2 ) - 6( x - 1 )( x + 3 ) = 7x - 3
<=> 2( 3x2 - 7x + 2 ) - 6( x2 + 2x - 3 ) = 7x - 3
<=> 6x2 - 14x + 4 - 6x2 - 12x + 18 = 7x - 3
<=> -26x + 22 = 7x - 3
<=> -26x - 7x = -3 - 22
<=> -33x = -25
<=> x = 25/33
<=> -36x =
\(B=-2x^2-3x+4=-2\left(x^2+\frac{3}{2}x+\frac{9}{16}\right)+\frac{41}{8}\)
\(\Rightarrow B=-2\left(x+\frac{3}{4}\right)^2+\frac{41}{8}\le\frac{41}{8}\)
\("="\Leftrightarrow x=-\frac{3}{4}\)
B = -2x2 - 3x + 5
B = -2( x2 + 3/2x + 9/16 ) + 49/8
B = -2( x + 3/4 )2 + 49/8
\(-2\left(x+\frac{3}{4}\right)^2\le0\forall x\Rightarrow-2\left(x+\frac{3}{4}\right)^2+\frac{49}{8}\le\frac{49}{8}\)
Dấu " = " xảy ra <=> x + 3/4 = 0 => x = -3/4
=> MaxB = 49/8 <=> x = -3/4
6x(3x + 5) - 2x(3x - 2) + (17 - x)(x - 1) + x(x - 18) = 0
=> (18x2 - 6x2 - x2 + x2) + (30x + 4x - 16x - 18x) - 17 = 0
=> 12x2 - 17 = 0
=> 12x2 = 17
=> x2 = 17/12
=> \(\orbr{\begin{cases}x=\sqrt{\frac{17}{12}}\\x=-\sqrt{\frac{17}{12}}\end{cases}}\)
\(27x^3-9x^2+x-\frac{1}{27}=\left(3x\right)^3-3.3^2.\frac{1}{3}x^2+3.3.\left(\frac{1}{3}\right)^2x-\left(\frac{1}{3}\right)^2\)
\(=\left(3x-\frac{1}{3}\right)^3\)
Bài làm:
1) \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)-2\)
\(=\left(x-3\right)\left(x^2-6x+9-x^2-3x-9\right)-2\)
\(=-9x\left(x-3\right)-2\)
\(=27x-9x^2-2\)
2) \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)
\(=\left(x-1\right)\left(x^2-2x+1-x^2-x-1+3x\right)\)
\(=\left(x-1\right).0=0\)
=> đpcm
3) \(\frac{68^3-52^3}{16}-68.52\)
\(=\frac{\left(68-52\right)\left(68^2+68.52+52^2\right)}{16}-68.52\)
\(=\frac{16\left(4624+68.52+2704\right)}{16}-68.52\)
\(=7328+68.52-68.52=7328\)
máy tính đâu???